Time-series analysis of vibrational nuclear wave packet dynamics

U. Thumm, T. Niederhausen
James R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS, USA

B. Feuerstein
MPI fuer Kernphysik, Heidelberg, Germany

We discuss the extent to which measured time-dependent fragment kinetic energy release (KER) spectra and calculated nuclear probability densities can reveal 1) the transition frequencies between stationary vibrational states, 2) the nodal structure of stationary vibrational states, 3) the ground-state adiabatic electronic potential curve of the molecular ion, and 4) the progression of decoherence induced by random interactions with the environment. We illustrate our discussion with numerical simulations for the time-dependent nuclear motion of vibrational wave packets in the D2+ molecular ion caused by the ionization of its neutral D2 parent molecule with an intense pump laser pulse. Based on a harmonic time-series analysis, we suggest a general scheme for the full reconstruction, up to an overall phase factor, of the initial wave packets based on measured KER spectra.

This work was supported by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy, and by the National Science Foundation.

Presented at DAMOP, May 2008, in State College, PA.


Return to do another abstract search of all our holdings.

JRM Nav Bar
JRM Home Page Phone & E-Mail Directory JRM Web Site Map JRM Web Search Options Vincent Needham Physics Department Home Page K-State Home Page