Ultrafast Science and Development at the Astra-Artemis Facility

Edmond Turcu¹, Emma Springate¹, Chris Froud¹, John Collier^{1,5}, Jon Marangos², John Tisch², Ricardo Torres La Porte², Thomas Siegel², Yasin C. El-Taha², Nathaniel Kajumba², Leonardo Brugnera², Immacolata Procino², Roy Newell³, Ian Williams⁴, Jason Greenwood⁴, Chris Calvert⁴, William Bryan^{5,1}, Andrea Cavalleri^{6,8}, Sarnjeet Dhesi⁷, Jonathan G. Underwood^{3,1}, Ian Mercer⁹, Mads Gabrielsen¹⁰, Richard J. Cogdell¹⁰, Luca Poletto¹¹, Paolo Villoresi^{12,11}, Fabio Frassetto¹¹, Stefano Bonora¹¹, Mark Roper¹³.

¹Central Laser Facility, STFC Rutherford Appleton Laboratory, UK. ²Blackett Laboratory, Imperial College London, UK. ³Department of Physics and Astronomy, University College London, UK. ⁴School of Mathematics and Physics, Queen's University Belfast, UK. ⁵Department of Physics, Swansea University, UK. ⁶Department of Physics, Clarendon Laboratory, University of Oxford, UK. ⁷ Physical Science Division, Diamond Light Source Ltd, UK. ⁸Max Planck Research Group for Structural Dynamics, Centre for Free Electron Laser Science and University of Hamburg. ⁹School of Physics, University College Dublin, Ireland. ¹⁰Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow, UK. ¹¹LUXOR, CNR-INFM, Padova, Italy. ¹²DEI-University of Padova, Italy. ¹³STFC Darsebury Laboratory, UK

Astra-Artemis is a unique, new, ultrafast science facility under development in the UK. The paper will report on the: (a) ultrafast science experimental results obtained with Artemis on: HHG mapping of electronic structure; ultrafast molecular process; HHG with 2-colour laser fields, energy transfer in photosynthesis and (b) Artemis facility development of new ultrafast XUV and laser beamlines and time-resolved science end-stations.

Astra-Artemis is a unique, new, ultrafast science facility open to UK and EU university groups as well as to world-wide collaborations. The paper will report on the:

• New ultrafast science experimental results and

• Artemis facility capabilities and development. The facility development proceeds in parallel with the ultrafast-science experimental schedule.

The ultrafast science programme bringing together the expertise of a large number of university groups produced new results in the:

Investigation of HHG mapping of electronic structure of polyatomic molecules (ICL, UCL, CSIC, Napoli, CLF);

• Investigation of HHG with 2-colour laser fields (ICL, UCL, CLF);

• Measurement and control of ultrafast molecular process: vibrational and rotational states in simple molecules (UCL, QUB, SU, CLF); dissociation of vibrationally cold simple molecules held in an ion trap (QUB, DCU, SU, Denison, CLF);

• Energy transfers and coherences in a photosynthetic protein (UCD, ICL, Glasgow, CLF).

The Astra-Artemis facility provides three ultrafast laser beams, two ultrafast XUV beamlines, and two end-stations for ultrafast science. All the femtosecond laser and XUV beams are synchronized to sub-femtosecond resolution. Either beam combination can be temporally and spatially overlapped (delayed and focused) on targets into either of the two end stations.

The two end-stations are dedicated to ultrafast time-resolved:

• materials science (solid target)

• atomic and molecular physics (gas-phase target)

The laser and XUV beamlines consist of the:

• Red Dragon (KML) Ti: sapphire laser driver generating 14Watt with 1kHz repetition, sub-30fs pulse duration and carrier-envelope-phase (CEP) lock.

• Hollow fibre sub-10fs laser compressor (ICL, CLF)

• TOPAS (Light Conversion) opto-parametricamplifier (OPA) laser tuneable from UV into the mid-IR.

• The XUV beams are produced by focusing either of the laser beams in the high-harmonicgenerator (HHG) chamber. The XUV photon energy range is 10eV – 100eV. The two beamlines provide:

• Monochromatic and tuneable XUV photon pulses spectrally selected from the HHG beam with a novel time-preserving XUV monochromator (CNR, DEI, CLF, DL). This beamline is optimized for the materials science end-station

• Broad-band XUV beamline optimized for the atomic and molecular physics end station.