
SpecTcl Tutorial 

7/3/12 Version 
 

 

Connecting to Sorting Computers and LINUX basics 

 

Currently we have six LINUX machines that will be available for offline sorting:   auger, 

balmer, fourier, oppy, stern, and stark.  These are all “headless” rack PC’s in CW31 that 

can only be accessed remotely via puTTY or Private Shell.   These can be accessed from 

the start menu on your PC.  If they are not there, see the guys in PCSC. PuTTY first 

dumps you into a Configuration screen.  You can configure sessions to different 

computers and Save them for later recall with the Load key (they will show up under the 

scrolled selection box under Saved Sessions).   The three most important settings to 

check are that The Backspace key is set for Control-?(127) under the Terminal-

>Keyboard section,  the Enable X11 Forwarding box is checked in the Connection-

>SSH->X11 section, and the Host Name of the machine you want to connect to is entered 

(e.g. balmer.phys.ksu.edu).  These settings can be saved by clicking on the Session menu 

inside the puTTY window, then typing a name in the Saved Sessions box to match the 

name (e.g. balmer) in the Host Name box, then clicking on the Save button.  Private 

Shell also begins in a “Log in – Server parameters” screen that lets you recall saved 

setups or create new ones.  Here, you mainly want to check that the “Forward remote 

X11 connections to local display” box is checked in the Tunneling menu. For X windows 

to work correctly, the Xming X server must be running on your machine.  This should 

have happened automatically when you logged in, as indicated by a black X in the lower 

right system tray of your status bar at the bottom of the screen.  If it’s not there, see 

PCSC.  

 

To sort, you should log into one of the above machines as ##online, where ## is replaced 

by the initials of your group leader (lc, ib, vk, ct, mk, ar, or bd for now).  All people in 

each group should log in using the same ##online account and password, set by the 

group. Once logged in, you are on a LINUX box, so Microsoft Windows commands no 

longer work.  LINUX is case sensitive, so don’t forget that.  If you want to be able to 

open several windows without logging in again, do a  

 

konsole & 

 

This will run the konsole terminal program in the background, and clicking New Shell in 

the Session menu will give you another terminal session.  You can switch between 

sessions with the tabs at the bottom of the window.  Private Shell will let you open other 

windows with the Terminal button. (Note that the ampersand (&) at the end of any 

LINUX command means to run in the background and return control to the prompt.  

Otherwise, you can’t do anything else in that window until the program you are running 

is finished.)  To change directories, do a  

 

cd  ~/lcgroup/dray 

 



for example.  (The tilde (~) translates to the home directory of the user logged in, in this 

case lconline.  Note that each group has a directory defined as ##group, where ## are the 

same group initials used in the ##online login name.  All files under this ##group 

directory are located on the departmental networked SANS and are backed up regularly 

by PCSC.  Anything above the ##group directories, say in a directory ~ibonline/mydir, is 

on the local LINUX machine and not backed up. 

 

To create a directory, use the command mkdir.  For example, to create the directory 

mydir under Itzik’s SANS group directory, use 

 

mkdir ~/ibgroup/mydir  

 

To copy a file to mydir from another directory called olddir, use: 

 

cd  ~/ibgroup/mydir 

cp  ~/ibgroup/olddir/oldfile.txt  . 

 

(That’s a _space_ period at the end, important. The period means the current directory in 

LINUX.) 

 

This will put the file oldfile.txt in mydir, using the same name.  To copy a directory and 

all of its files to another directory, use the following: 

 

cp –r ~/ibgroup/olddir/fildir ~/ibgroup/mydir 

 

This will create the directory ~/ibgroup/mydir/fildir containing all of the files the 

~/ibgroup/olddir/fildir contained. 

 

A few other useful LINUX commands are: 

 

List the contents of a directory: 

  ls (add -l to see more details, add *.xxx to see files of that form) 

 

Move a file 

  mv location/filename newlocation/newfilename 

 

Remove (i.e. delete) a file 

  rm location/filename.xxx 

 

See the full documentation  for a command: 

  info command (use 'Ctrl'-c to exit) 

 

Get a man page (help documentation) for a command, sometimes shorter than info 

  man command 

 

Search text files for a word 



  grep word filenam (use -i for non-case sensitive, add *.XXX to search files of that form) 

 

See the contents of a file one page at a time 

  more name.xxx (this will type the file on screen; press the spacebar for the next page) 

 

The above commands allow you to manipulate files with the command line.  Many prefer 

to do so graphically, as in Windows Explorer.  A good tool for this is the Web 

Browser/File Manager Konqueror.  To run, type: 

 

konqueror ~ & 

 

on the command line.  The tilde (~) will start konqueror looking at the ##online directory.  

You can replace it with any starting path that you wish, such as ~/lcgroup. 

 

 

TCL (Command language) Files 

 

You will notice that you have several *.tcl files in your sorting directory.  These are 

Tcl/Tk command language files, analogous to the old *.com parameter files on the VAX.  

Tcl (pronounced “tickle”) is an open source scripting language that is widely used.  Tk is 

the graphical user interface toolkit for Tcl.  Lots of online resources and published books 

can help you be as productive in this language as you wish, but for now we’ll just focus 

on the SpecTcl specific parts.  One important Tcl file is usually called setup.tcl. This is 

where your parameters and spectra are defined and other setup tasks performed.  SpecTcl 

must have a parameter defined for every entity you want to histogram.  A spectrum is 

then associated with that parameter.  If you have a 2D spectrum, you must define two 

parameters, one for the x axis and one for the y.  As an example, consider the following 

two lines from a setup.tcl file.  

 

parameter adc8 108 12 

spectrum adc8 1 adc8 12 

 

The first line defines a parameter called adc8.  Each parameter must be assigned a 

number, and this one is assigned number 108.  This number will be used inside the 

sorting code to actually increment the parameter.  This parameter is set up to hold 

numbers up to 12 bits in length, or 4096, i.e. a 4096 channel spectrum.  The next line 

defines a spectrum that displays the histogram of the variable.  The first adc8 is the name 

of the spectrum (it’s fine to use the same name for both parameter and spectrum).  The 1 

means it’s a 1D spectrum.  The second adc8 is the parameter that the spectrum is 

histogramming, and the 12 means it, too, is 4096 channels.  It is also possible to define 

parameters and spectra with real ranges, such as: 

 

parameter rtof4 223 

spectrum rtof4 1 rtof4 {{0. 3000. 1000}} 

 



Here, parameter 223, called rtof4, will be histogrammed by a spectrum with a real range, 

and so it doesn’t need a range value.  The spectrum range definition is more complicated:  

It runs from channel 0. to channel 3000. and has 1000 bins.  Note the double braces, 

required for the definition.   

 

2D spectra can also be defined, for example: 

 

parameter pipicox 240 

parameter pipicoy 241 

spectrum pipico 2 {pipicox pipicoy} {{0. 2000. 400} {0. 2000. 400}} 

 

Note that I have to define a parameter for both the x and y variables.  By comparing to 

the 1D definitions, this should be self-explanatory.   

NOTE: the rules on names you can use are very lenient.  There is no reason (other than 

typing) to use short parameter names or to have the same spectrum name as parameter 

name.  For example, this would be perfectly acceptable: 

 

parameter 2nd_recoil_time_of_flight 240 

parameter 1st_recoil_time_of_flight 241 

spectrum tof_coincidence 2 {2nd_recoil_time_of_flight 1st_recoil_time_of_flight) {{0. 

2000. 400} {0. 2000. 400}} 

 

It is also fine to use the same parameter for several spectra, as long as the parameter 

ranges are the same in each. 

 

The spectra defined in setup.tcl are not automatically available for plotting.  The 

command  

 

sbind spectrumname 

 

will assign a display slot in the display program (called Xamine) to the new spectrum 

named spectrumname.  You can also define a series of spectra and then issue one 

 

sbind –all  

 

command at the end.  This is typically what’s done in setup.tcl. 

 

*.tcl files can also be used to set other variables that can be used inside the sorting code.  

This is as an alternative to using constants in the sorting code itself and rebuilding the 

code each time a change is made.  If only a few parameters need to be set, they can be 

incorporated into the setup.tcl file.  If there are numerous parameters, it is often more 

convenient to create a separate parameter file and read it in before sorting.  (How this is 

done will be described below). 

 

C++ Tips 

 



All of the sorting code itself is written in C++.  In many ways, C++ is very similar to the 

C language, but with some extensions, the biggest being the concept of Object Oriented 

(OO) programming:  classes, hierarchies, inheritance, etc.  Fortunately, you don’t need to 

understand much about OO to modify and even write successful sorting code.  If you 

know only Fortran, here are a few tips (in no particular order) to remember about C++: 

 

• No indentation is required, but it is often used to make code sections and iterative 

loops more readable. 

• Comments can either be as in C, where /* starts a comment and */ ends it, no 

matter how many lines are in between, or the C++ specific //, meaning everything 

following on the same line until the carriage return is a comment.  

• Each line of a C or C++ program (with some exceptions) must end in a 

semicolon, “   ;   “. 

• Header files, basically chunks of code that get added to the source code and often 

have the extension .h, are included with an #include command.  If the command is 

in the form #include “filename.h” , with the header name in quotations, the 

compiler (actually the “preprocessor”) looks for the file in the local directory.  If 

it is written #include <filename.h>, it looks in one of the standard include 

directories that the compiler knows about.  (This can be changed in the Makefile). 

• There is no implicit variable typing.  All variables must be explicitly defined, 

using, for example, int for integer and float for real. Other modifiers can be used 

in front of these, such as constant or unsigned.  The author of SpecTcl has defined 

shorter names for many of the combined types for use in the program, such as 

UInt_t for unsigned int.  

• Arrays use square brackets [], not parentheses (), as in evarr[256].  Typically, the 

array index starts at 0, so that a 256 element array runs from 0 to 255.  Two 

dimensional arrays use multiple brackets, as in rec[3][16]. 

• Output can be done easily by using the operators << and >> and names for 

standard error and standard output, cerr and cout.  For example, the line cerr << 

"Too many hits on channel " << chan << endl; replaces the variable chan with its 

value and writes the line to standard error, which will appear on your konsole 

screen.  The variable endl has been defined to mean end-of-line and carriage 

return. 

• Variables can be incremented or decremented by 1 with the ++ or -- operators, as 

in count++; to increment the variable count. 

• Braces {} are used to mark off sections of code that go together, such as 

subroutines, if blocks, or loops (for and while loops). 

• Logical comparisons in if statements use ==, <, >, <=, >=, ! (for “not”), && (for 

“and”), and || (for “or”).  One of the most common mistakes in C or C++ is to use 

a single = for equality comparisons.  The statement if (a = 1) actually sets the 

variable a equal to 1 instead of giving a logical value if the two are equal ( the 

proper form is if(a == 1) ). 

• Pointers are often a difficult concept to grasp.  A pointer is a variable whose value 

is the address of another variable, not its value.  So, assume we have an integer 

variable ival.  The pointer to ival would be declared with  int* pval;  meaning that 

pval points to an integer.  Then, pval can be assigned with pval=&ival; where the 



& operator means “address of”.  If pval is incremented, with pval++, it means that 

it now points to the next address location.  If instead the form  *pval is used, as in 

(*pval)++, the content of the address pointed to by pval, ival, is incremented by 

one.  Obviously, proper use of parentheses is important here.  This is especially 

useful when passing variables as arguments to subroutines.  By default, these 

variables show up in the subroutines as copies of the originals, so changes made 

in the subroutine to the copies are not made to the originals once the program 

returns from the subroutine.  However, if pointers are passed as arguments, the 

subroutine can make changes to the original by using the *pval form, since the 

copy of the address still works as the address of the original variable.  

• Instead of the do loop in Fortran, C and C++ use a for loop.  The format is  

for(int i = 0;i < imax;i++) { 

. 

. 

} 

The variable i is only defined for the duration of the loop, so it must be defined as 

an int and initialized.  The loop starts with i = 0 and stops when i is greater than or 

equal to imax.  i is incremented by 1 for each iteration. The braces aren’t 

necessary if there is only a single statement in the if block.  A similar loop is the 

while loop, which continues to execute the loop as long as the condition in the 

while statement is true.  For example, 

while (*pl != 0x0000C0FF) {  // Execute as long as the value at pointer  

// location pl is not equal to Hexadecimal 0000C0FF. 

  evarr[evCount] = *pl++; // Copy the value of the variable pointed to by pl 

// into array evarr, then increment pointer to point to next item in buffer. 

  evCount++;   // Increment event counter. 

 } 

• C and C++ don’t have as many built in math operators as Fortran.  In particular, 

there is no operator for taking a number to a power, such as ** or ^.  If  something 

just needs to be squared, it’s easiest to write it out as a multiplaction (ivar * ivar).  

For larger powers, library routines can be used (pow(d,e), d to the power e). 

• The OO idea of classes does directly affect how “subroutines” are defined in C++.  

A class is typically first declared in a header file with the class keyword, and all 

subroutines that are part of that class are declared within the braces {} of the 

class.  For example,  

class CLVEventDecoder : public CEventProcessor 

{ 

void Resort(int arg1, int arg2); 

. 

} 

defines the class CLVEventDecoder, which is based on the class 

CEventProcessor, and declares one of its routines Resort.  Then, when the 

routines are actually defined, usually in the *.cpp file, they are referred to by the 

form:  classname::routine, such as CLVEventDecoder::Resort(int arg1, int arg2).  

This means that the routine Resort is part of the class CLVEventDecoder. 



• Each class has “private” data that can only be accessed by subroutines in the 

class, sort of like Fortran “common” in that it survives between subroutine calls.  

The data variables are defined in the class definition in the header file and 

typically initialized in a class subroutine called the constructor (just a subroutine 

with the same name as the class).  The initialization can be done with a (0), such 

as  

CLVEventDecoder::CLVEventDecoder() : 

  m_nEventCount(0), 

  m_nGoodCount(0) 

{ 

} 

where the private data variables m_nEventCount and m_nGoodCount are both 

initialized to 0. 

 

Remember, C++ is a very powerful language, just like Fortran, and it will take a lot of 

work to master it.  However, these few tips will hopefully answer many of the questions 

that come to mind when looking at C++ source code for the first time. 

 

SpecTcl Sorting Code Logic 

 

SpecTcl sorting code must conform to the structure that SpecTcl requires.  The first step 

in understanding that structure is to look at the sorting class subroutines that have special 

meaning.  If the class name is CLVEventDecoder, for example, these routines are 

CLVEventDecoder::OnAttach, CLVEventDecoder::OnBegin, 

CLVEventDecoder::OnEnd, and CLVEventDecoder::operator().  Commands included in 

the OnAttach routine are run when SpecTcl starts up for the first time.  OnBegin 

commands are run at the beginning of each run, assuming that the data buffer has a begin 

event.  OnEnd is after an end run event.  These should be relatively self-explanatory, but 

the operator() routine is the most non-intuitive from a Fortran point of view.  C++ allows 

something called operator overloading, which is basically re-defining a standard operator 

to mean something else.  In this case, the parentheses operator (), when used with the 

CLVEventDecoder class, is defined to carry out the commands in the operator() code 

(between the { and }).  This use is actually something you will never see, as it is buried 

deep in the support code for SpecTcl.  However, you only need to know that what 

happens in the operator() routine is the code that gets executed for each event.  This is 

where the bulk of the sorting actually takes place.  Other subroutines can be defined and 

called by the user from the basic SpecTcl routines, usually operator(). 

 

SpecTcl parameters are histogrammed in two ways, depending on if the parameter is to 

be incremented only once per event or multiple times per event.  The first case is much 

easier, only requiring a line such as: 

 

rEvent[208] = xr2; 

 

which increments parameter 208 at position xr2 by 1. (Remember, the parameter is what 

is processed; the spectra are histograms of the parameter). This is different from other 



systems like ROOT where a histogram increment is explicitly done.  It also means that 

there is no simple mechanism to do multiple increments on a parameter in a single event, 

such as incrementing a time-of-flight spectrum parameter with all time hits.  This requires 

manipulating the spectrum itself and involves a lot of code overhead.  It looks daunting, 

but the basic format can be used for all multiple-increment spectra.  Let’s consider a 

multiple TOF spectrum.  The first step is to make the spectrum part of the private class 

data with the line: 

 

CSpectrum* m_prtofall; 

 

in the class definition in the header file.  CSpectrum* means that m_prtofall is a pointer 

to the class CSpectrum.  The pointer is initialized to 0 in the event decoder constructor 

just like any other variable, with m_prtofall(0).  Next, the actual spectrum has to be found 

for m_prtofall to point to.   

 

string strrtofall = "rtofall"; // Define a string variable to hold the spectrumname 

m_prtofall = pHistogrammer->FindSpectrum(strrtofall); // Use the FindSpectrum 

// subroutine in the class pointed to by pHistogrammer to find the spectrum named 

// rtofall.  If found, m_prtofall will now point to the spectrum. 

if(m_prtofall){   // Make sure it found the spectrum, i.e. m_prtofall isn’t 0. 

 if(m_prtofall->getSpectrumType() != ke1D) { // Make sure  it’s a 1D spectrum. 

  cerr << "Found "<<strrtofall<< " but it's not 1-D\n"; // If not print error and 

  m_prtofall = (CSpectrum*)kpNULL;   // reset pointer to 0 (Null). 

 } 

} 

 

Finally, the spectrum is incremented as follows: 

 

for(int i = 0;i<nrec;i++) {  // Here, loop through several hits in this event 

  if(m_prtofall) { // rtofall spectrum (make sure it has been properly found) 

   newIndex = (UInt_t)(m_prtofall->ParameterToAxis(0,rtof[i])); // Since this spectrum 

// was defined with a real axis, an axis transformation is necessary, using the value rtof[i]. 

   if(newIndex < m_prtofall->Dimension(0)){ // Check to make sure the channel 

// isn’t out of range by checking against the spectrum’s dimension. 

    newValue = (*m_prtofall)[&newIndex] + 1;  // Increment the value currently  

// at that channel.  Note that the definition of the spectrum requires the address of the 

// index (channel), as &newIndex. 

    m_prtofall->set(&newIndex,newValue);  // Actually set that channel’s value. 

   } 

  }   

 } 

 

The same technique works for 2D spectra with minor changes to account for the second 

dimension.  I have created functions called MultiPlot1d and MultiPlot2d to do these 

multiple increments.  Note, however, that this method of multi-incrementing essentially 

bypasses some of the benefits of SpecTcl, such as being able to use real numbers 



(including negative numbers) on the axes of spectra, and having access to the built-in 

gating commands.  Other methods are available to do this within the SpecTcl context.  

See me for further information. 

 

Often, variables that are seldom changed, such as physical constants or the size of a 

channel plate, are initialized in a header file with the word Constants somewhere in the 

name, such as CLVConstants.h or C1290Constants.h.  Should changes be necessary, it’s 

easier to locate the variables when collected in one place, change them, then rebuild the 

code.  It is also possible to initialize some of these variables in a Tcl file so that the 

sorting code doesn’t need to be rebuilt each time a change is made to a “constant”.  

Please see me for information on how to do this, as it is beyond the scope of this 

description. 

 

Building and Running the Sorting Code  
 

Now, on to compiling, linking, and running the sorting code.  In what follows, I’m 

assuming your current directory is the same as that where your sorting code resides, for 

example, ~/ibgroup/Xlasersort/SpecTcl.  Once inside a sorting directory, you make sure 

that the executable file is up-to-date via the commands (in one of your regular Linux 

terminal windows, such as a konsole window) 

 

make clean 

make 

 

The first command deletes all of the old compiled and linked files and is not strictly 

necessary if the make dependencies have been properly configured.  However, it’s safest 

to use it initially until you become more comfortable with the procedure.   The second 

command recompiles and links the code.  The result is that you will have a file called 

SpecTcl that is the executable used to run the program.  By the way, a nice feature of the 

shell used on our LINUX box is command completion.  If you type enough of a 

command or filename to clearly identify it from other possibilities, hitting the Tab key 

will complete the command/name for you.  The rules used by the make command are 

found in a file called Makefile in the directory you are in.  This is a very powerful file 

that makes compiling and linking up-to-date code much simpler, but learning how to 

modify the file will take some time.  Usually, you shouldn’t need to touch it. 

 

To run the sorting code for the first time, from your sorting directory, type: 

 

./SpecTcl < setup.tcl   

 

(Note, for some groups, a parameter file needs to be read in before setup.tcl) 

 

The ./ means look for the SpecTcl program in the current directory.  The < is LINUX 

redirection, meaning to read in the file that follows.  You should see four X objects pop 

up on your screen (some of them may be hidden, so look below on your taskbar in the X 

section to bring them forward if necessary).  These are the gui window, the tkcon 



window, the Xamine window, and the SpecTcl command buttons window.  The Xamine 

window is where you will look at and manipulate spectra, the tkcon window is where all 

commands will be typed, the gui window allows you to get spectrum and parameter 

information and execute some commands via a gui menu, and the SpecTcl command 

buttons are for frequently used commands.  The most common commands to execute are 

as follows: 

• If you have done some of your variable definition in a Tcl parameter file called, 

for example, rerun1000.tcl, after modifying a parameter in that file, in the tkcon 

window type 

 

source rerun1000.tcl 

 

• You need to attach an event file to let SpecTcl know which file to sort.  This is 

done, naturally, with the attach command.  If you are sorting data that was not 

taken with the data acquisition system, nscldaq, you will have to specify the size 

of the buffer, since it’s different from the default.  A command that will attach a 

Labview data file called datfil, for example, is 

 

attach -size 204816 -file /common/lcgroup/data/datfil 

 

where 204816 is the size of the buffer in bytes.  To combine several data files into 

one sort, the following will work: 

 

attach -size 204816 -pipe cat /common/lcgroup/data/datfil1 

/common/lcgroup/data/datfil2 

/common/lcgroup/data/datfil3 

 

This takes advantage of a “pipe” in Linux that hooks up the output of one 

command, cat in this case, to the input of another, here the attach command.  If 

desired, all of this can be put in a separate command file and sourced in from the 

tkcon window or even placed at the end of the setup.tcl file. 

 

• To Start/Stop sorting, click on the Start/Stop Analysis button on the SpecTcl 

command window.  Spectra can be cleared with one of those buttons, and 1D and 

2D spectra can be exported to a text file for reading in to Origin. 

• To look at spectra in the Xamine window, you first have to define a set of display 

panels and choose which spectra to display.  Predefined sets of spectra may 

already be defined   These can be accessed by the Window->Read Configuration 

buttons.  The various window sets are displayed under the Files heading.  Select 

one and click OK.  If you want to define a new window set, click on the 

Geometry button at the lower right of the Xamine screen.  This allows you to 

configure the display for up to a 10x10 matrix of spectra.  After selecting your 

display geometry, you have to select specific spectra to go in each slot.  The 

Display button allows you to select a single spectrum for a single slot.  It produces 

a scrolled list of all the spectrum names you have defined.  Selecting one with the 

mouse (or typing the name in the text box) and clicking OK will display that 



spectrum in the display slot.  The Display+ button will automatically step through 

each available slot as you select a spectrum and hit the Apply button.  Use the OK 

button for the last slot you want to fill.  If you want to save this particular display 

configuration, the Window->Write Configuration buttons will let you give it a 

name.  It will automatically be given a .win extension.  

• A given spectrum can be chosen to fill the display by double clicking on it. 

Double clicking again will reduce it to its former size.  (The Zoom button does the 

same thing.) Part of a spectrum can be expanded by using the Expand button.  A 

window will pop up to let you enter the coordinates at each end of the area you 

want to expand, or you can click on them with the mouse.  Note that sometimes 

this window pops up behind the Xamine window and can be hard to see.  You can 

look on the taskbar at the bottom of your PC in the X # Xming group to find the 

Expand window and click on its name to bring it to the front if necessary.  The 

UnExpand button removes the expansion.   

• To calculate the area of a peak in a spectrum, first define a Summing Region with 

the Xamine button of the same name, then click the Integrate button.  These are 

simple integrations, i.e. a sum of the counts in each channel between the summing 

region boundaries.  The centroid and FWHM are also calculated.  For background 

subtraction or fitting, the data must be exported to Origin.  Summing regions can 

be removed by clicking on the Graph_objects pull down menu at the top of the 

Xamine screen and selecting Delete.  You’ll get a list of graphical objects defined 

for that spectrum, including summing regions, and these can be selected to delete.   

• To overlay one spectrum with another, click on the Spectra pull down menu at the 

top of Xamine and then click on Superimpose.  To remove an overlay, click on 

UnSuperimpose.   

• The Log button in the middle of the bottom part of the Xamine screen toggles 

back and forth between a log scale on the Y axis for 1D spectra or the Z axis for 

2D spectra. 

• The Map button next to the Log button toggles back and forth between displaying 

the channels as integers, 0 to the maximum channel in that dimension, or as the 

spectrum was defined, from the defined minimum to maximum channel numbers.  

If the spectrum was defined as a number of bits in size, these two will be the 

same. 

• The Marker button puts a dot on the spectrum.  The Cut button sets a 1D gate, 

Band sets a 2D gate.  Read the more extensive online SpecTcl documentation for 

how to use gate commands. 

• Other options can be accessed from the menu buttons at the top of the Xamine 

screen, such as setting Spectra properties like Autoscale.  You can experiment 

with these. 

• To print a spectrum, click on the File menu and select Print...  Usually, I select 

Landscape, Print Selected Spectrum, and Specify size in Spectrum Options.  

Then, in the Spectrum Options tab, I set the size to be 9” wide by 6” high.  To 

print all of the spectra on a multi-spectra display, select Print All Spectra and 

choose the number of Rows and Columns to match the display.  Output options 

can be either To File or To Printer.  If Printer, the Print Command has to have the 

right printer name after the lpr –P.  Available printers and their names are: 



 

acc4600 HP4600 color printer in lab, single side 

acc4600d “                                         “, duplex 

accebis  EBIS b&w printer 

acchplj8150 HP8150 b&w printer in lab, single side 

acchplj8150d “                                        “, duplex 

co349000  HP9000 b&w printer in CW34, single side 

co349000d “              “, duplex 

c034c4600 HP4600 color printer in CW34, single side 

c034c4600d “                                              “, duplex 

c034dell5310 Dell b&w printer in CW34, single side 

c034dell5310d     “                                    “, duplex 

c305lj4000 HPLJ4000 b&w printer in CW305, single side only 

• Spectra can be saved and then read back in with the swrite and sread commands.  

The format of these commands can be found in the more complete online SpecTcl 

documentation.  These are best for saving and reading a single spectrum.  

Although several spectra can be written to a single file with swrite, sread will only 

read the first spectrum in that file unless it is called from within a more complex 

Tcl procedure.   Procedures have been written to write all defined spectra to an 

ascii file and to read those spectra back in later, replacing the contents of existing 

spectra.  Typing wrtall in the tkcon window will pop up a graphical file dialog 

that allows you to specify the name and location of a file to write the spectra to.  

The result will be an ascii file that contains all defined spectra.  To read them 

back in, type rdall, select the file from the pop up dialog, and wait for the 

procedure to finish.  (This will take a few seconds depending on how many 

spectra you have and how large they are.)  Remember that any existing spectra 

will be overwritten. 

• To make sure the spectra are updated during the sort, choose Options and select 

Update Rate.  Set the slide bar to 10 seconds and click Apply to All. 

• There are two options for taking projections of 2D spectra.  The first is a 

command that we have written in house in TCL code.  The format is: 

 

Xproject sourcename ylow yhigh targetname 

Yproject sourcename xlow xhigh targetname 

 

The sourcename is an existing 2D spectrum and targetname is an existing 1D 

spectrum, which you must define in your setup.tcl file.  For example, the lines 

 

parameter proj256  1256   8 

spectrum proj256 1 proj256 8 

 

define a 256 channel 1D spectrum to histogram parameter 1256.  The low and 

high values are the channels limits to include in the projection sum.  There are no 

default values, so these limits must be included.  The spectra created with this 

command are static pictures (snapshots) of the source spectra at the time the 



command is run.  The projection spectra do not accumulate new counts if the sort 

is continued. 

 

The newest version of SpecTcl as of this writing (SpecTcl 3.3) has a built in 

projection command.  Its format is: 

 

project [-[no]snapshot] sourcespec newspec x|y [contourname] 

 

where you choose “x” or “y” depending on which direction you wish to project.  

The snapshot option works like our homemade X or Yproject commands.  -

nosnapshot creates a spectrum that is incremented when the sort is continued, or 

even cleared and restarted.  Here, sourcespec is an existing 2D spectrum and 

newspec is the name of a new, nonexistent 1D spectrum.  Instead of manual 

channel limits, an optional contourname can be given to limit the number of 

channels included in the projection.  A contour can be set by clicking on a 2D 

spectrum, clicking the Contour button, and then clicking a series of points on the 

spectrum to form a contour, closed by the OK button.  You have the option of 

giving the contour a name or using the default name provided.  If you forget the 

name of a contour, you can click on the Graph_objects pull down menu at the top 

of the Xamine screen and select Copy Object, which will give a list of graphical 

objects defined for that spectrum.  If a contourname is omitted, all channels along 

one axis of the spectrum will be summed for the projection.  Before displaying the 

newly created projection spectrum, you have to issue the command sbind –all in 

the tkcon window to let Xamine know that the spectrum exists. 

 

Help and Additional Capabilities  
 

Aside from this document, help for SpecTcl can be found at the following URL: 

 

http://docs.nscl.msu.edu/daq/spectcl/ 

 

This was written by SpecTcl’s author, Ron Fox, at the Cyclotron Lab at Michigan State 

University.  All of the built-in SpecTcl commands listed in this document are explained 

there in greater detail. 

 

Clearly, Xamine is not perfect as a spectrum display program.  In particular, the spectra 

aren’t publication quality.  However, the author of the code is continually upgrading it 

and seems responsive to suggestions.  It is also a very easy thing to export spectra and 

read them into Origin where they can be prepared for publication.  Also, event files can 

be exported in a format that can be read in by the CERN program ROOT (a successor to 

PAW).  ROOT is a powerful package that has numerous built-in analysis tools as well as 

superior graphics.   

 

As experiments are becoming increasingly complex, event files are growing larger and 

the associated sorting time is increasing.  For some experiments, many of the events fail 

to satisfy some basic conditions and can be ignored.  In that case, further sorting on a 



given run can be greatly speeded up by writing out a filtered data set and then performing 

subsequent sorting on the filtered data.  Typically, the filtered data file is much smaller 

than the original and can be much quicker to sort. 

 

For information on these additional capabilities or if you have further questions, please 

contact Kevin Carnes, kdc@phys.ksu.edu. 


