
DLD Anode Position Conversion
Kevin Carnes
April 13, 2007

Derivation of Horizontal Position X

This development will be given in terms of the horizontal position signals. Vertical
position may be calculated in an analogous manner. The horizontal signals coming from
a DLD detector can be written, in units of ns, as

x

x
dl v

xl
tTL

)(+
++=

x

x
dr v

xl
tTR

)(−
++=

Here, T is the time of arrival of the detected particle on the MCP, dlt and drt are offsets,
including the TOF from the MCP to the delayline anode (same for L and R) and any
cable delay to the CFD (can be different for L and R) minus the cable and CFD delay for
the T signal, xl is the half-length (in mm) of the horizontal winding on the delay line
(i.e. the distance from the center to one end of the anode), x is the position in mm from
the center of the horizontal anode, and xv is the velocity in mm/ns of the signal on the
anode. We can solve for the position x in mm as follows:

02
)(

2
)()(

x
RLvttvRLv

x xdrdlxx −
−

=
−−−

= ,

where 0x is an offset to get the zero position correct.

With the LeCroy TDC, we actually measure the position signals in channels, where each
channel corresponds to 0.5 ns. Therefore, the full position calculation would be:

04
)(

x
RLv

x chchx −
−

= ,

where chL and chR are now in units of TDC channels.

Published Values of Transverse Velocity

The only way to definitively determine the constants xv and 0x is through the use of a
detector mask with a calibrated grid. However, Roentdek publishes approximate values
(they say to within 5%) for each of their detectors that we can use as a check. In the most
recent version of their MCP Delay Line manual (v 6.2.90.7), they list what they call
“single pitch propagation times” for each detector as follows:

DLD40 0.73 ns/mm
DLD80 0.95 ns/mm
DLD120 1.25 ns/mm

This number is the inverse of the propagation velocity xv . Thus, the values for xv would
be:

DLD40 xv = 1.37 mm/ns
DLD80 xv = 1.05 mm/ns
DLD120 xv = 0.80 mm/ns

Note that, assuming that the conversion from channels to ns has already been made, the
position calculation can be made with an explicit factor of 2, as in, for the DLD80,

02
)(05.1

x
RL

x −
−

= ,

or the conversion constant can be redefined to incorporate the factor of 2, as in

0)(525.0 xRLx −−=

The second form is equivalent to multiplying the Roentdek single pitch propagation time
by 2, giving a value of 1.9 ns/mm for the DLD80, which corresponds to the number listed
on page 8 of their manual as “the correspondence between position and time in the 2d
image”.

Origin of Transverse Velocity and Consistency Checks

The values for the transverse velocities can be understood by looking at how a delayline
is constructed. We’ll use a DLD80 as an example. The distance between the outer edges
of the ceramic cylinders that hold the windings are 118 mm and 120 mm. This works out
to straight sections of 110 mm of wire in air on each side and 15 mm curved sections in
contact with each cylinder. If we consider a single loop of wire, this is 220 mm in air and
30 mm in contact with the cylinder. The windings are in pairs, with the two wires of the
pair .5 mm apart and a single wire wrapped 1 mm apart. Therefore, for a single loop, the
pitch is 250 mm to 1 mm. A signal has to travel 250 mm around the loop to travel 1 mm
in the transverse direction. On the portion of the loop in air, the signal will travel at the
speed of light. However, according to Roentdek, the signal sees the ceramic on the turns
and has an effective relative permittivity there of 6≅rε , so that the propagation velocity

is reduced by 45.26 = . Therefore, the time it takes the signal to go around one loop is:

 ns
sm

m
sm

m
978.

/103
)45.2(03.

/103
22.

88 =
×

+
×

.

This is .978 ns per 1 mm, or 1.02 mm/ns, close to the values of .95 ns and 1.05 mm/ns
given in the Roentdek manual. A consistency check on these values from actual data can
made using time sum values. We can sum the two position signals to get:

x

x
drdl

x

x
dr

x

x
dl v

l
ttT

v
xl

tT
v

xl
tTRL

2
2

)()(
+++=

−
+++

+
++=+

The value we typically plot in our time sum spectra is therefore:

x

x
drdl v

l
ttTRL

2
2 ++=−+

If we take xl to be one-half the length of a ceramic winding rod (one-half of 85 mm for
the DLD80), and assuming that dlt and drt are neglible, the xdelay value should be
roughly nsnsmmmm 81)/05.1/(85 = . Typically the two offsets will sum to a few nsec,
increasing this value to give the measured time sum (the centroid of the peak in the time
sum spectrum).

Conversion examples

Here are a few conversion examples from the sorting code I’m familiar with:

Itzik’s group: Positions are calculated by a Posn function that takes as input a
conversion factor Conv and the raw lsig and rsig signals in channels, then calculates

Posn = Conv*(1.0*lsig -1.0*rsig)/2.0

It uses a conversion value of Conv = ch2mmx = .51 mm/ch. This is for a DLD80
detector. So, one of the factors of 2 is included in the conversion constant and the other
is explicit in the Posn calculation.

PAW FORTRAN code used by Lew and Igor’s groups: Their resort code returns an
array, typically called el for electrons and rec for recoils. It is a two dimensional array.
The second dimension contains the hit number. The first dimension has value 1 for the
timing signal, 2 for the R – L signal, and 3 for the D – U signal. In the analyse.f code,
these values are converted to position in mm by multiplying by a conversion factor, gx or
gy, and dividing by 2, as in xr1 = gxr*result(2,1)/2. Note: in some older code, this
explicit factor of 2 was omitted, so that spectra plotting position in mm were incorrect.
Momenta values were corrected by including another factor of 2 in their calculation.
Instead of using a factor of 6101× to convert from mm/ns to m/s for the further
conversion to au, a factor of 5105× was used.

Andre Staudte’s code : He uses a function called makepos, where, for a DLD anode, the
position is (tdc(x1) – tdc(x2))/(2.*f), where the tdc values are already in ns, and f is
around 1. for a DLD80.

University of Colorado COBOLD code : Inside a C++ function called
AnalysisProcessEvent, they calculate position as DLD_pos_x = (tdc_ns(x1)-
tdc_ns(x2))*scalefactor, where the scalefactor is .386. Note the conversion from
channels to ns has already been made, and the other factor of 2 is incorporated into the
scalefactor (DLD120 =xv 0.80, so 40.02/ =xv).

