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ABSTRACT

The interaction of ultrashort, intense laser pulses with atomic and molecular sys-

tems is studied theoretically. The strong field approximation is applied to describe atomic

dynamic processes. We first show the characterization of attosecond pulses from photoion-

ization of Argon atoms assisted by a circularly polarized laser pulse. By studying the angle-

resolved photoelectron spectra, we show how to retrieve the electric field of the attosecond

pulses by fitting the measured electron spectra using a genetic algorithm.

A quantum theory is further developed to describe the dynamics of an autoionizing

state generated by an attosecond XUV pulse in the presence of a femtosecond IR laser

pulse. The lifetime of the autoionizing state is determined directly in the time domain

from the time-resolved photoelectron spectra. By coherently treating different transition

channels, interference effects can be observed. This work extends Fano’s theory covering an

autoionizing state to the time domain in a time-dependent field.

Compared to atoms, molecules have more degrees of freedom when interacting with

laser fields. Because of the different time scales, these motions are generally weakly coupled.

We studied the dynamic aligning of molecules by a laser pulse. The experimental obser-

vations of ionization suppression of certain molecules suggests the ionization of molecules

depends on molecular structure, and thus the alignment of the molecules. We demonstrated

the possibility of determining this alignment dependence in a double-pulse configuration.

Distinct time dependence of the total ionization yield has been predicted, and the results

have been verified by recent experiments.
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Chapter 1

Introduction

The interaction of an atom with ultrashort intense laser pulses has been studied

extensively in the past couple of decades (see review articles [1, 2, 3, 4]). With the rapid

development of laser technology, laser pulses have been generated in shorter durations as

well as in higher intensities. As the laser intensity approaches 3 × 1016 W/cm2, the laser-

atom interaction is comparable to the atomic potential, and strong field effects, e.g., high

order harmonic generation (HHG), tunneling ionization (TI), above threshold ionization

(ATI), and stabilization, begin to emerge. On the other hand, as the laser pulse duration

is pushed to the femtosecond, or even attosecond region, many atomic dynamic processes

can now be resolved or controlled in the time domain with corresponding time resolution.

This new frontier poses new challenges not only in theoretical understanding but also in

numerical methods for treating atomic processes in ultra-short, intense laser fields.

Single electron ionization of an atom by a short laser pulse is now well understood.

The mechanism for ionization can be characterized as a multiphoton transition or tunneling

ionization, depending on the Keldysh parameter γ [5], which is defined as γ =
√

Ip

2Up
, where

Ip is the ionization potential and Up=
I

4ω2 , is the ponderomotive energy of a free electron

moving in a laser field with intensity I and frequency ω. The Keldysh parameter measures

the ratio of tunneling time to the laser period. If γ < 1, tunneling ionization is significant,

but if γ > 1, the multiphoton ionization process dominates. The tunneling ionization rate

is given by ADK theory [6, 7], which has been shown to agree well with experimental results

for single ionization of atoms. However, extending of this theory to multiple ionization of

atoms and ionization of molecules has proved to be a challenge, and other physical effects

(e.g., sequential and non-sequential double ionization [8, 9] and structure of molecules [10])

need to be taken into account. For multiphoton ionization, electrons can absorb more
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photons than the minimum required, leading to the above threshold ionization (ATI) [11].

One interesting problem is to investigate the role of ponderomotive energy in ATI, such as

the energy shift of ATI peaks and the vanishing of certain ATI peaks (the so-called channel

closing effect) [12, 13, 14].

The interaction of quasi-free electrons with parent ions in the laser pulse leads to

high-order harmonic generation (HHG), which can be interpreted as a three-step process.

First, the electron tunnels out through the potential barrier formed by the laser field and

the atomic potential. Second, the ionized electron moves freely in the laser field, and when

the field switches direction, the electron is driven back. Finally, it recombines with the

parent ion and emits harmonics. This recollision or rescattering picture [7, 15, 16] is a

powerful framework for understanding many laser-atom interaction phenomena. From the

classical equation of motion of the electron, the maximum returning energy of the electron

is 3.17Up [17]. The HHG spectrum has a generic shape: a rapidly decreasing part, following

by a plateau region, and then a rapid decay after the cut-off. The cut-off energy is given by

Ip +3.17Up, which is the maximum recombination energy of the returning classical electron.

The theoretical foundation of the rescattering model lies in the strong field approxi-

mation. If the atomic potential is negligible compared to the laser field (close to 1 a.u.) , the

electron in the continuum can be treated as a free particle moving in the laser field. Assum-

ing that the laser intensity is in the tunneling region, the contribution of all bound states

except the ground state can be neglected. Under these approximations, the time-dependent

Schrödinger equation can be solved semi-analytically [18]. This treatment recovers the

classical rescattering picture based on the saddle-point analysis. The harmonic generation

spectrum can be obtained from the Fourier transformation of the time-dependent dipole

moment.

One of the challenges in HHG is to extend the cut-off energy. It has been reported

that harmonics of wavelength down to a few nanometers into water window region has been
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generated from a 800 nm Ti:Sapphire laser [19]. When the intensity is above saturation

intensity, harmonic generation from ions will take over, thus providing a way to extend the

cut-off because the ions have higher ionization potential and can be subjected to higher

laser intensities [20].

Attosecond Physics:

HHG can be used to generate coherent XUV radiation. In the plateau region, two

electron trajectories per half laser cycle have the same recollision energy [21]. Each recol-

lision gives a burst of attosecond radiation; thus the pulse generates an attosecond pulse

train [22, 23]. Experimentally observed HHG involves the collective effect of atoms since

photon emission is a coherent process. Phase matching is required to propagate light in the

medium. Only short trajectories survive after propagation. Since the recollision from the

short trajectories repeat every half of the laser cycle, the resulted spectrum is discrete, and

separated by 2ω. However, in the cut-off region, the HHG from a few-cycle laser pulse is

much smoother, because the highest harmonics are generated by a single-electron trajectory

close to the peak without possible periodicity, which suggests an isolated attosecond burst

of radiation [24, 3].

Based on the rescattering picture for HHG, isolated attosecond pulses can be gen-

erated in two ways. One is to take advantage of the harmonics generated in the cut-off

region. By selecting the radiation produced only within a fraction of the laser cycle near

the peak of the pulse using a filter, XUV pulses of about 100 attoseconds (as) duration can

be generated [25, 24, 26]. Another approach is to control the trajectories of the rescattering

electron by using polarization gating [27, 28, 29]. Elliptically polarized light gives a trans-

verse momentum to ionized electrons, thus making them miss the parent ions upon return

and resulting in very weak HHG. Only electrons born within the linear part of the pulse

contribute to HHG. When the time interval in the linear part is short enough, one single

burst of attosecond radiation is emitted. The efficiency of this method is low because only

3



a small fraction of the pulse is used for harmonic generation. On the other hand, it does

overcome the limitation of the low intensity of HHG in the cut-off region.

The carrier-envelope (CE) phase (absolute phase) of few-cycle laser pulses is crucial

for laser stimulated physical processes like HHG [30, 31] and rescattering ionization [32,

33, 34]. Though phase stabilization has been achieved [35, 36, 37], the measurement of the

CE phase is more difficult. Various approaches have been proposed, based on, for example,

the sensitivity of angular distribution of photoelectrons [32, 14, 34], phase-dependent HHG

[30, 37], and tunneling ionization by a circularly polarized pulse [38].

The current status of attosecond physics has been reviewed in [39, 3, 4]. As the

shortest pulses available in the laboratory, attosecond XUV pulses can be used to resolve

many atomic dynamic processes involving electronic motion in the time domain. As a first

proof-of-principle application of attosecond pulses, the Auger lifetime of an inner shell hole

was determined in the time domain by Drescher et al. [40]. By stabilizing the CE phase,

electronic processes in intense light fields are controlled at the sub-femtosecond scale [37].

In order to prove the existence of attosecond pulses, characterization and measurements

are developed at the same time. Because of the (so far) weak intensity of XUV pulses

generated and a lack of nonlinear media working in this wavelength region, measurement

techniques rely on the cross-correlation of the XUV pulse with an IR femtosecond pulse in

two-color photoionizations [41, 42, 43, 44]. Single attosecond pulses with a duration of 700

as have been measured [45, 46, 47] recently in a laser-assisted photoionization experiment.

The same technique can directly measure the light field[48]. Pulse trains are measured from

two-photon, two-color photoionization [22, 49] as well.

All the measurements still have to be carried in the energy domain, so it is theo-

retically a challenge to extract dynamic information from the time-resolved spectra. Full

ab initio calculation of a dynamically evolving system in light fields is difficult and time-

consuming because of the large parameter space. However, by grasping the essential physics,
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semi-analytical quantum mechanical models have been developed for laser-assisted pho-

toionization [43], time-resolved Auger decay [40, 50, 51], and laser-assisted autoionization

[52]. The excitation or ionization by the XUV pulse can be treated perturbatively because

of its weak intensity. The evolution of the system in a laser pulse thus can be treated

semi-classically under the strong field approximation. By varying the time-delay between

the two pulses, the time-resolved laser-dressed electron spectrum provides insight into the

dynamics of the system.

Laser-Molecule Interactions:

Recently, basic mechanisms involving laser-molecule interactions have been probed at

more fundamental levels, owing to the wide availability of intense femtosecond laser pulses,

with pulse durations in the tens of femtoseconds and the use of OPAs to cover a broader

range of mean wavelengths. With such controls, the interplay of electronic dynamics, the

rotational motion, and the vibrational motion, including dissociation and ionization, can

be probed with a broad range of parameters (see review articles [53, 54]).

The tunneling ionization rates of molecules are very similar to atoms if they have

nearly identical ionization potentials. However, a detailed study found exceptions [55, 56,

57, 58, 59]. The origin of ionization suppression of some molecules was explained in [10].

The ADK theory of tunneling ionization for atoms has been extended to diatomic molecules

by including the properties of molecular orbitals into the theory; thus, the so-called MO-

ADK theory was developed [10]. This theory not only interpreted the origin of ionization

suppression for certain molecules but also predicted that the cutoff of the high-order har-

monics would be extended for molecules like O2 but not for N2. Such predictions have

been confirmed in experimental research [60]. The ionization probability of molecules, ac-

cording to the MO-ADK theory, showed dependence on the alignment of the molecules. In

order to check such dependence, aligned molecules are required (see review article [54]).

Molecules can be aligned during periods of rotational revival after being pumped by a
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prepulse so the alignment-dependent ionization can be determined in a double-pulse mea-

surement [61, 62, 63]. Alternatively, the alignment dependence can also be probed from

the angular distributions of the ion fragments following double ionization. To ensure that

the laser field does not contribute to the alignment before the ionization and that post-

ionization alignment [64] is negligible, sub-10 fs weaker laser pulses (less than 10 fs) have

been used to doubly ionize the molecules in the so-called nonsequential double ionization

region where the second ionization is by nearly isotropic rescattering. This method has

been used by Professor C. L. Cocke’s group at Kansas State University to probe alignment

dependence for a number of molecules [65].

By detecting fragments from dissociation and analyzing the kinetic energy release,

some basic processes of molecules in intense laser fields have been identified, like bond soft-

ening [66], bond hardening [67], above-threshold dissociation and charge resonant enhanced

ionization (CREI) [68]. The avoided crossings of the photon-dressed states in the Floquet

picture is the key to interpreting most of these processes. However, the dynamics are not

time-resolved directly, and the Floquet picture is questionable when the pulse is only a few

cycles long.

The generation of attosecond pulses from high-order harmonics generation implies

sub-laser-cycle electronic dynamics. The rescattering of the tunneling electrons can lead

to double ionization (Coulomb explosion), to excitation and dissociation of molecules that

provides a natural way to probe the molecular dynamics in a sub-femtosecond scale [69].

The ionization of the first electron launches a pair of correlated nuclear and electronic

wave packets and starts the molecular clock. The second ionization of the molecular ion

from rescattering sets the “stop” time. By measuring the kinetic energy release following

Coulomb explosion, the time between the ionization events can be determined to attosecond

accuracy [70, 71]. Because of the high current densities (8 × 1010 A/cm2 and short time
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scale (about 1 fs), the rescattering electrons may potentially serve as a natural pulsed beam

to image molecular structures [72] as well.

Outline of this thesis

The next two chapters will focus on attosecond physics. In Chapter 2, we examine

the possibility of retrieving the electric field of an XUV attosecond pulse generated by

polarization gating. A genetic algorithm is applied to fit the angle-resolved photoelectron

spectra of Argon by XUV pulses assisted by a femtosecond circularly polarized laser. In

Chapter 3, we present the theory of laser-assisted autoionization by an XUV attosecond

pulse and discuss the determination of Fano parameters from the time-resolved electron

spectrum. Alignment of molecules by a laser pulse is discussed in Chapter 4. The alignment-

dependent ionization of diatomic molecules N2 and O2 is discussed in the context of a double

pulse experiment. A summary and conclusion is given in Chapter 5.
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Chapter 2

Laser-dressed XUV photoionization: attosecond pulse measurements

2.1 Introduction

Single attosecond extreme ultraviolet (XUV) or soft x-ray pulses can be generated

by high-order harmonic generation with few-cycle femtosecond infrared (IR) laser pulses

[3]. Their short wavelength and weak intensity means that the conventional autocorrelation

method cannot be used to determine their pulse durations directly. So far, pulse duration

has been determined with laser-assisted photoionization where photoelectron spectra by

XUV pulses are measured in the field of the IR lasers. By varying the time delay between

the laser and XUV pulses, their cross-correlation is built either by the laser-induced energy

shift [46] or by the laser-broadened spectral width [45]. Based on the quantum mechanical

formulation of laser-dressed photoionization [43, 44], pulse duration of a few hundred of

attoseconds [46] has been determined from experimentally measured photoelectron spectra.

Most recently, this technique has also been used to characterize directly the electric field of

a few-cycle laser pulse [48]. In the generating and characterizing of XUV pulses from these

time-resolved measurements, so far only linearly polarized lasers have been used.

An alternative approach to making single attosecond pulses is through high-order

harmonic generation using the polarization gating method [73, 27, 74, 28, 75, 29]. Using

a laser composed of two opposite circular polarizations, a supercontinuum covering the

plateau and the cutoff region of the harmonic spectrum has been recently generated [76].

This method is illustrated in Fig. 2.1. By superimposing a left-circularly polarized pulse of

about 5 fs with a delayed (by about 5 fs) right-circularly polarized pulse, the ellipticity of

the combined pulse is almost zero over a short time interval near t=0 [29]. In Fig. 2.1, it

can be seen that within this interval, less than an optical cycle, the electric field of one of the

two orthogonal components vanishes, and the electric field is almost linearly polarized. The
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radiation generated from such a pulse can be calculated, and a supercontinuum spectrum

is generated. This supercontinuum showed correspond to XUV pulses as short as 200 as.

However, this duration has not been determined experimentally as yet. For my thesis, we

developed a technique that can be used to measure the time-dependent electric field of the

attosecond pulses. The method employs the cross correlation between the attosecond pulses

with the circularly polarized lasers that were used to generate the attosecond pulse.
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Figure 2.1. The time-dependence of the ellipticity and the two perpendicular electric field
components of a laser pulse resulting from combining a left-hand circularly polarized pulse
and a right-hand circularly polarized pulse. The pulse duration for both circular pulses
is 5 fs and the delay between them is 5 fs. The solid and dotted lines represent the two
orthogonal field components and the dashed line shows the ellipticity. Note that the small
window of vanishing ellipticity or polarization gating where the combined field is nearly
linearly polarized.

In such measurements, the attosecond pulse will be delayed by approximately 5 fs so

that the generated photoelectrons only interact with the portion (t>5 fs) of the laser pulse
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that is almost circularly polarized. To simplify the analysis, we used an ideal circularly

polarized field to represent the laser. By refocusing the XUV pulse and the fundamental

circularly polarized laser into the argon gas, the XUV pulse characterization was determined

from the measured angle-resolved photoelectron spectra. Such a setup involved XUV pho-

toionization assisted by a short circularly polarized laser. The basic theory for such cross

correlation measurement has been addressed by Itatani et al. [44]. In this work, we ex-

amined in detail the laser streaked photoelectron spectra by taking the angle-dependent

photoionization cross section into account. We first studied theoretically the angle-resolved

photoelectron spectra for such experiments by changing the attosecond pulse parameters,

in particular, the pulse durations and the chirp parameters. We illustrated how the elec-

tron spectra changed with these parameters. From the calculated electron spectra, we then

showed how to retrieve the attosecond XUV pulse parameters. This technique is expected

to be used to determine the attosecond pulses in the time domain when electron spectra

from such cross correlation experiments become available.

The quantum theory of laser-assisted photoionization is reviewed in Section 2.2. In

Section 2.3, we address the photoionization of Ar atoms by monochromatic light. The

atomic structure parameters from these calculations will be used in Section 2.4 to generate

“theoretical” photoionization electron spectra by attosecond pulses in the presence of cir-

cularly polarized lasers. Thereafter, we explore how the electron spectra changed with the

pulse duration, and then how they changed with the chirp. In Section 2.5, we discuss how

to retrieve the attosecond XUV pulse parameters from the given angle-resolved electron

spectra. Finally, we give a short conclusion on this chapter in Section 2.6. Atomic units

will be used throughout unless otherwise indicated.
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2.2 Quantum theory of laser-assisted photoionization

Consider an atom in a single-electron approximation under the influence of a laser

field. The time-dependent Schrödinger equation (TDSE) in the length gauge is given by

i
∂Ψ(~r, t)

∂t
=

[

−1

2
∇2 + V (~r) − ~r · ~E(t)

]

Ψ(~r, t), (2.1)

where V (~r) is the atomic potential and E(t) is the external laser field. Dipole approximation

is applied for the laser-atom interaction. To solve this equation, we make the following

assumptions (strong field approximation):

1. No depletion of the ground state;

2. Neglect the influence of Coulomb field on the electrons in the continuum so that they

can be treated as free particles moving in the laser field (Volkov state);

3. No other intermediate bound states contribute, i.e., assume that the atom has only

one bound state and continua.

The time-dependent wave function can be expanded as

Ψ(~r, t) = eiIpt

(

|0 > +

∫

d~p b(~p, t)|~p >
)

, (2.2)

where Ip is the ionization potential of the ground state |0 >, and |~p > denotes the con-

tinuum electron with momentum ~p. The TDSE can be solved semi-analytically in this

approximation, and the amplitude of the continuum electron |~p > is given by

b(~p, t) = i

∫ t

−∞
dt1

∑

~p′

< ~p|~p′(t, t1) >< ~p′(t, t1)|~r · ~E(t1)|0 > eiIp(t1−t) (2.3)

where |~p′(t, t1) > is the Volkov state describing a free particle moving in a laser field and is

given by

|~p′(t, t1) >=
1

(2π)3/2
ei(~p+ ~A(t)− ~A(t1))·~re

i
R t

t1
dt′′(~p+ ~A(t)− ~A(t′′))2/2

, (2.4)

where ~A(t) is the vector potential related to the electric field by

~E(t) = −∂
~A

∂t
. (2.5)
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The transition amplitude can be written explicitly as given in [18]:

b(~p, t) = i

∫ t

−∞
dt1 ~E(t1)·~d[~p+ ~A(t)− ~A(t1)] exp {−i

∫ t

t1

dt′′[
(~p+ ~A(t) − ~A(t′′))2

2
+ Ip]}, (2.6)

where ~d(~p) is the dipole transition moment from the ground state to the continuum |~p >.

This equation has been derived in length gauge [5, 18], in acceleration gauge [77], and in

velocity (radiation) gauge [78]. The transformation between different gauges is given in

Appendix B.

The strong field approximation has been proved to be powerful and is extensively

used in studying HHG and ionization. Once the transition amplitudes to the continua are

obtained, the induced dipole moment, and thus high-order harmonic generation, can be

calculated directly [18]. The S-matrix form of this formulation is also used for calculating

above-threshold ionization and multiple ionizations [79, 80, 81].

This approximation is further applied to the two-color photoionization of atoms by

a combination of a linearly polarized XUV pulse and a linearly or circularly polarized laser

pulse [43, 44]. In such a setup, the cross correlation of the two pulses is established through

the laser-assisted photoionization, which provides a possible way of measuring the duration

(a few hundred attoseconds) of the short XUV pulse. The photoelectron spectrum, if we

rewrite the formula above, is given by

b(~p, t) = i

∫ t

−∞
dt′ ~E(t′) · ~d[~p + ~A(t) − ~A(t′)]

× exp{−i
∫ t

t′

[~p + ~A(t) − ~A(t′′)]2

2
dt′′ + iIP t

′}. (2.7)

When t goes to ∞, the vector potential vanishes (as our choice), and we have

b(~p) = i

∫ ∞

−∞
dt′ ~E(t′) · ~d[~p − ~A(t′)]

× exp{−i
∫ ∞

t′

[~p − ~A(t′′)]2

2
dt′′ + iIP t

′}. (2.8)
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By considering the different photon energy scales of the XUV and the laser field, this

can be further simplified. For a weak laser field, ionizations by the laser field itself can

only go through a multiphoton process. In the non-resonant case, multiphoton ionizations

are much weaker than ionizations by single photon. Thus in the process of generating the

continuum, we can neglect the contribution of the laser field. This assumption can be

checked numerically by calculating the ionization probability by the laser field and by the

XUV pulse individually. In propagating of the free electron in the field, we neglect the XUV

pulse, since the vector potential is inversely proportional to the photon energy.

The integral over time can be performed by the stationary phase method, i.e., only

the times that electrons born at the saddle point ts contribute mostly to integration. The

saddle points satisfy the stationary phase equation

1

2
[~p− ~A(ts)]

2 = W0 (2.9)

that expresses the conservation of energy in laser-dressed photoionization, where W0 is the

electron energy given by h̄ωx − Ip at birth. For a laser field linearly polarized along the

XUV polarization direction, recasting this equation, the kinetic energy of the photoelectron

is obtained as

Wp = W0 +Up(t)(cos 2ωlts−1)+4Up(ts) sin2 ωlts cos2 θ+
√

8W0Up(ts) sinωlts cos θ, (2.10)

where θ is the angle of the electron final momentum with respect to the XUV (and laser)

polarization direction.

We can reformulate the equation above as shown in [44]. Defining the angle between

final momentum ~p and birth momentum ~p0 (
p2

0

2 = h̄ωx − Ip) as β, we have

p = A cos θ + p0 cos β, (2.11)

A sin θ = p0 sin β, (2.12)
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and

Wp = A2 cos2 θ/2 +W0 cos2 β +AP0 cos θ cosβ. (2.13)

Recognizing

cos β = ±
√

1 −A2 sin2 θ/p2
0, (2.14)

we have

Wp = W0 + 2Up(t) sin2 ωlt cos 2θ + cos β
√

8W0Up(t) sinωlt cos θ. (2.15)

For a circularly polarized laser field given by

1√
2
E[cos (ωlt)~ex + sin (ωlt)~ey], (2.16)

the expression of the photoelectron kinetic energy can be generalized as

Wp = W0 + Up(t) cos 2(ωlt− θ) + cosβ
√

4W0Up(t) sin (ωlt− θ) (2.17)

with

cos β = ±
√

1 − A2

2
sin2 (ωlt− θ)/p2

0. (2.18)

2.3 XUV photoionization of Ar assisted by a circularly polarized laser

Let us consider photoionization of Ar atoms by XUV pulses assisted by a circularly

polarized laser field. Electrons that are born at different times within the XUV pulse gain

additional time-dependent drift velocity from the laser field, which is rotating in time. The

XUV pulse with duration τx and photon energy ωx can be generally described by

~Ex(t) = Re{E0xe
−σ(1−iξ)t2eiωxt~ex}, (2.19)
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where σ = 2 ln 2/τ2
x , and ξ is a dimensionless chirp parameter. The XUV pulse is linearly

polarized along x direction with intensity 1012 W/cm2 and mean photon energy 35 eV. A

circularly polarized laser field is characterized by an electric field

~El(t) =
1√
2
E0(t)[cos(ωlt+ φ)~ex + sin(ωlt+ φ)~ey ], (2.20)

that has a Gaussian shape with FWHM of 5 fs, intensity of 5×1013W/cm2. The central

wavelength of the laser is taken to be 750 nm.

For electrons born at time t, a drift momentum (proportional to the vector potential

of the laser field) given by

~Al(t) =

∫ ∞

t

~El(t)dt (2.21)

will be added to the photoelectron. For the convenience of analysis, if the envelope is slow

varying, the drift momentum can be approximated by

~Al(t) ∼=
1√
2ωl

E0(t)[− sin(ωlt+ φ)~ex + cos(ωlt+ φ)~ey]. (2.22)

According to the strong-field approximation [5, 18] as discussed in the previous section, the

laser-assisted photoelectron spectrum is given by [43, 44]

b(~p) = i

∫ ∞

−∞
dt~d(~p′(t)) · ~Ex(t) exp

[

−i
∫ ∞

t
dt′

p′(t′)2

2
+ iIpt

]

, (2.23)

where b(~p) is the amplitude of finding the continuum electron with momentum ~p , ~p′(t) =

~p − ~Al(t) is the instantaneous momentum of electron at time t, and Ip is the ionization

energy. From the saddle point analysis, most of the contribution to the time integral comes

from the time ts satisfying the stationary phase condition given by Eq. 2.9; and the classical

model is thus developed in [46, 45]. However, in the calculation, integration over time in

Eq. 2.23 is performed numerically.
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2.3.1 Cross section and asymmetry parameter for photoionization of Ar

For simplicity, we first consider single ionization of Ar atoms by a monochromatic

XUV light. We used the single active electron model where the argon atom is described by

a model potential [82]

V (r) = −(1 + 5.4e−r + 11.6e−3.682r)/r. (2.24)

Starting from the occupied 3p orbital, the electron is released to s-wave or d-wave continuum

through one-photon photoabsorption. The radial dipole matrix elements to ǫs (R−) and ǫd

(R+) continuum states are given by

R−(+) =

∫ ∞

0
rP3pPǫs(ǫd)dr, (2.25)

where the P’s are the r-weighted radial wavefunctions. Because there are six 3p valence

electrons in the ground state of argon, the total cross section σtot is proportional to

|d|2 = 6(
1

3
R2

− +
2

3
R2

+), (2.26)

where d is the magnitude of the total transition dipole moment.

The angular distribution of the photoelectrons by a linearly polarized light is given

by

dσ

dΩ
=
σtot

4π

[

1 + β
3 cos2 θ − 1

2

]

, (2.27)

where θ is the angle of the electron’s final momentum with respect to the light polarization

direction, and β is the asymmetry parameter that can be calculated using the method

described in [83]. Knowing the β parameter and the total transition dipole moment, in

the same spirit of obtaining the differential cross section, we can define an effective angular

dependent transition dipole moment for later calculating laser-assisted photoionization.

Figure. 2.2 shows the calculated (a) |d|2 and (b) the β parameter versus the photon

energy of the monochromatic XUV light. The results from this simple calculation show

16



0 10 20 30 40 50
Photoelectron energy (eV)

0

2

4

6

Pr
ob

. D
en

.
0 10 20 30 40 50

0.2

0.4

0.6

0.8

1

|d
|2 

(a
. u

.)

0 10 20 30 40 50
0

0.5

1

1.5

2

β

(a)

(b)

(c)

Figure 2.2. (a) The square of the dipole transition moment and (b)the asymmetry parameter
β from the ground state of Ar by monochromatic light. (c) The ionization probability
density vs photoelectron energy of Ar ionized by an XUV pulse which has mean photon
energy of 35 eV, duration of 0.1 fs and peak intensity of 1012 W/cm2. Dashed lines represent
the spectral shape of the XUV pulse.

reasonably good agreement with the more elaborate many-electron calculations [84, 85],

including the position of the Cooper minimum. A direct numerical solution of the time-

dependent Schrödinger equation for the ionization of argon atom in a short XUV pulse

has also been carried out under the single-active electron approximation with these pulse

parameters: mean photon energy, 35 eV; pulse duration, 100 attoseconds (as); peak inten-

sity, 1012 W/cm2. The photoelectron spectrum from such a calculation is presented in Fig.

2.2(c). The interaction is in the perturbation regime, so the spectral intensity distribution

of the XUV pulse can be obtained by dividing the electron spectral density by the photoion-

ization cross section, as shown in the dashed lines in Fig. 2.2(c). Assuming that the pulse
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is transform-limited, the XUV pulse in the time-domain is obtained directly by a simple

Fourier transformation. However, such an assumption is not generally valid.

2.3.2 Transform-limited XUV pulses

First we consider transform-limited XUV pulses for which the chirp parameter is

zero. XUV pulse parameters are chosen as in Fig. 2.2. Note that an XUV photon energy

of 35 eV corresponds to the 21st-order high harmonics from the Ti:Sapphire laser field

with a wavelength 750 nm. Laser intensity was chosen to be 5 × 1013 W/cm2 so that the

ionization probability by the XUV itself (intensity is 1012 W/cm2) is two orders higher than

the ionization probability by the laser field (from the ADK theory). The two pulses peak

at the same time, t = 0. The polarization direction of the XUV pulse is defined as the x-

axis (zero angle). The drift velocity at t = 0 is along y direction if the laser phase is zero

and -x direction if laser phase is π/2.

Figure 2.3. (a) Energy and angular distributions of photoelectrons from Ar by a single XUV
pulse of duration (FWHM) 100 as. The polarization of the XUV pulse is along the x-axis
from which the angles of the photoelectrons are measured. (b) and (c), electron spectra by
XUV pulses assisted by a circularly polarized laser with phase of π/2 and 0, respectively.
The XUV pulse was assumed to be not chirped.

For XUV photon energy of 35 eV, the asymmetry parameter β is approximately

1.5, thus the laser-free photoelectrons peak at 0 and 180 degrees as shown in Fig. 2.3(a).
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(Because of the stronger signal along the XUV polarization direction (x-axis), a smaller

detection angle is required when the detector is along the x-axis.) When a laser field is

present, the spectrum is deformed. Fig. 2.3(b) and Fig. 2.3(c) show the laser-assisted

photoelectron spectra for laser phase of π/2 and 0, respectively. The spectra are calculated

from Eq. 2.23. When the drift velocity is along the −x direction (φ = π/2; Fig. 2.3(b)),

more electrons are found in the −x direction, and the energy distribution is stretched in

the same direction, makeing the detection more efficient than for the laser phase 0 (Fig.

2.3(c)). Clearly, a phase-stabilized laser with the phase of φ = π/2 is more desirable. In

the following, we will only consider the laser phase φ = π/2 unless otherwise indicated.

Figure 2.4. Dependence of photoelectron spectra on the XUV pulse durations. The upper
row is for laser-free photoionization and the lower row is for laser-assisted photoionization
where the laser phase was chosen to be π/2. From (a) to (c) the XUV pulse durations are
0.2, 0.5 and 2 fs, respectively. The XUV pulses are assumed to have no chirp .

19



Figure 2.4 shows how the electron spectra change with increasing XUV pulse duration.

As XUV duration increases, the energy width of laser-free photoelectron spectra decreases.

On the other hand, when a circularly polarized laser is present, the distribution of the drift

velocity that the electrons gain during the XUV pulse duration becomes broader in the

angle; thus the resulting photoelectron spectra show increasing angular width. When the

XUV pulse duration approaches the laser period (Fig. 2.4(c)), ring-like sideband structures

appear following the trajectory of laser’s vector potential. The ring-like structures were also

observed for linearly polarized laser-assisted photoionization by a train of attosecond pulses

[49].

In short, if the XUV pulses are transform-limited, we have:

1. The electron energy width for a given angle decreases as the XUV pulse duration

increases.

2. The electron angular width for a given energy becomes broader as XUV pulse duration

increases.

3. The electron’s momentum image extends in all directions, and sideband structure

begins to emerge as the XUV pulse duration approaches the laser’s optical period.

Based on the pulse duration dependence of the spectra, the duration of the attosecond

pulse might be deduced by mapping the measured electron velocity image in accordance

with the principle of frequency resolved optical gating (FROG) [86]. As suggested by Itatani

et al. [44], the pulse duration can be retrieved from the angular distribution of electron

momentum at a given energy. We will discuss this further.

2.3.3 Chirp-dependence

In the previous section, we discussed how the electron spectra change with the du-

ration of the XUV pulses when they are transform-limited. However, for transform-limited

XUV pulses, the pulse duration can be obtained directly from the bandwidth of the photo-
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Figure 2.5. Photoelectron spectra by laser-assisted XUV pulses with different chirp param-
eters and pulse durations as indicated in the figure. The frequency width of XUV pulse is
fixed as 18.25 eV.

electron energy spectrum at any angle, without applying the laser field, as discussed earlier.

In general, the chirp parameter of the XUV pulse has to be determined in order to obtain

the pulse duration.

For the XUV pulse described in Eq. 2.19, with nonzero chirp parameter, the frequency

bandwidth is given by

∆ω =
4 ln 2

τx

√

1 + ξ2. (2.28)

We will examine laser-assisted electron spectra with fixed frequency bandwidth by varying

the pulse duration and the chirp ξ simultaneously. In Fig. 2.5, we present six cases of chirp

parameters and pulse durations: (a) ξ=0, τx=0.1 fs; (b) ξ=3, τx=0.32 fs; (c) ξ=5, τx=0.51

fs; (d) ξ=10, τx=1 fs; (e) ξ=15, τx=1.51 fs; and (d) ξ=20, τx=2 fs.
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Figure 2.6. The center of gravity energy of the photoelectrons vs the electron’s angle for
different chirp parameters from 0 to 20 of the XUV pulses. The width of the XUV pulse is
fixed at 18.25 eV. Note the shift to the higher energy as the chirp parameter increases until
at the highest chirp where the pulse duration is close to the optical period .

With the XUV pulse frequency bandwidths fixed, the laser-free photoionization spec-

tra are the same for all the six cases (if neglecting the final energy dependence of the dipole

transition moment). Thus, the pulse duration can not be resolved by XUV photoionization

alone. As the chirp increases from (b) to (f), the spectral image twists and splashes toward

the left (we used left-circularly polarized laser). This behavior can be understood from the

modified stationary phase equation:

1

2
[~p − ~Al(t)]

2 = E0 − 2σξt = Ω(t). (2.29)

In contrast to the zero-chirp case, in a chirped pulse, the electron is born with a time-

dependent instantaneous energy. Thus, the final electron momentum is not just rotated by
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the laser field but also stretched in magnitude because of the chirp. In this case, we cannot

determine the pulse duration from the angular distribution of the electron momentum at a

given energy. Instead, at each angle, we can define the center of gravity energy E(θ) (see

Fig. 2.6). By focusing on this trace for angles larger than 180o, we note that E(θ) increases

monotonically with increasing chirp, until we reach the large chirp parameter of 20 where

the duration of the XUV pulse of 2.0 fs is close to the laser period. This trace, combining

with the angular width, qualitatively illustrates the chirp and pulse duration dependence

of the XUV pulses in the time-domain.

2.3.4 Double XUV pulses

Next we consider a pulse train consisting of double pulses without chirp, separated

by T0/2 (i.e., half the laser period),

Ex(t− T0/4) + Ex(t+ T0/4), (2.30)

Each pulse has a duration of 0.2 fs and a corresponding peak intensity 1012 W/cm2. When

the polarization gating is not short enough, such a train of two attosecond pulses is gener-

ated. In this case, the duration of each pulse (within the pulse train) can still be retrieved.

For such a pulse train, the laser-free photoelectron energy spectra consist of two rings

separated by 2ωl; see Fig. 2.7(a). When the laser field is present, the spectra are distorted

but have two identical pairs. In Fig. 2.7, the laser phases are 0, π/4, π/2; from (b) to (d),

respectively. In (b) electrons generated by the left pulse show a +x shift, while electrons

generated by the right pulse show a −x shift. Thus, the total electron spectra are stretched

along the x-axis. In (c), electrons generated by the two pulses shift about half way toward

the 45 degree (and 225 degree) line. In (d), the shift to this diagonal line is complete, and

the electron spectra have a butterfly shape.
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Figure 2.7. Photoelectron spectra by a train of two attosecond XUV pulses: (a) no laser;
(b),(c),(d), with lasers, of phase 0, π/4 and π/2, respectively.

2.4 Retrieving the XUV pulse information

The laser-free photoionization spectrum is obtained from this equation:

b(~p) = i

∫ ∞

−∞
dt ~d(~p) · ~Ex(t) exp

[

i

(

p2

2
+ Ip

)

t

]

. (2.31)

If both the magnitude and phase of this photoionization amplitude are known, the pulse in-

formation can be retrieved directly by inverse Fourier transformation. However, only |b(~v)|2

is available experimentally. In order to obtain the phase information, one must rely on the

additional information supplied by the laser-assisted photoionization measurement, which
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builds the cross-correlation between the XUV pulse and the laser pulse. Our procedure

of retrieving the XUV pulse can be described as follows: 1) Using the measured laser-free

spectra as input; 2) Starting with a simple guess of the phase of b(~v) to reconstruct the

XUV pulse; 3) Use the guessed XUV pulse to calculate laser-assisted photoelectron spec-

tra; 4) Compare the calculated spectra with the measured spectra with the discrepancy

recorded as the error function; 5) repeat processes 2) to 4) with another guess until the best

(converged) fit was found.
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Figure 2.8. Comparison of the retrieved electric field with the original field. The inset shows
the intensity profile of the original and the retrieved pulses, in units of 1012W/cm2.

This fitting process can be improved by using genetic algorithm. To speed up retrieval,

instead of comparing the 2D momentum image, we can compare only the trace E(θ) defined
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earlier. In the simplest case, if we assume the XUV pulse is a Gaussian pulse with a linear

chirp, then only one parameter must be fitted based on Eq. 2.28.

For the general pulse shape and chirp, we can either discretize the phase into N slices

and vary them independently to find the best fit or expand the phase into a polynomial

φ(ω) =

N
∑

i=1

ci(ω − ω0)
i (2.32)

where ω0 is the center frequency, and the second order term corresponds to the linear chirp

of the pulse. Simulation showed that the latter method converges faster, so this method

was used to retrieve the pulse information.

Figure 2.9. Comparison of the photoelectron spectra calculated using (a) the original pulse
and (b) the retrieved pulse, at a different time delay of -0.2 fs .

To illustrate the retrieval method, we assumed the measured photoelectron spectrum

as given in Fig. 2.5(b). We used the procedure described above to retrieve the XUV pulse

information. In the simulation, we chose N=5. The retrieved pulse was compared to the

original pulse in Fig. 2.8. Both the magnitude and the phase of the retrieved electric field

agreed well. The agreement in the intensity profile was also quite good, as seen in the inset.

As a further check on how well the retrieved pulse agreed with the original one, we also
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simulated the electron spectrum at time delay of -0.2 fs, using both the original and the

retrieved pulses where the first spectrum was supposedly determined experimentally. As

shown in Fig. 2.9, the two spectra are in reasonable agreement with each other.

2.5 Conclusions

In summary, we performed calculations of angle-resolved photoelectron spectra of

Ar atoms in the combined field of an attosecond XUV pulse and a circularly polarized

laser pulse. We examined first theoretically how the electron spectra, including the angular

distributions, depended on the pulse duration and the chirp parameter of the XUV light

pulse. We also showed how to retrieve or measure the pulse duration and the chirp parameter

of such an attosecond XUV pulse if the angle-resolved electron spectra were available from

experiments. The method required that the few-cycle lasers be well characterized already,

including the carrier envelope phase.

By focusing on the main features of the laser-assisted photoelectron spectra, such as

the mean kinetic energy of the photoelectron at a given angle, we showed that it is possible

to retrieve the pulse duration and the chirp parameter from the measured electron energy

and angular distributions at a given time delay. Systematic checks can be further made

through multiple measurements by varying the time delay between the XUV and IR pulses.

For attosecond XUV pulses generated by the polarization gating method, the procedure

presented in this paper showed be able to characterize the pulse when photoelectron spectra

from such cross-correlation measurements become available.
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Chapter 3

Laser-dressed autoionization: time-resolved autoionization spectra

3.1 Introduction

Many-electron atomic and molecular systems with excess internal energy relax to

states of lower energy by rearranging their electronic structure. With the recently developed

attosecond XUV (extreme ultraviolet) pulses [22, 45], it is possible to obtain time-resolved

images of an Auger decay [40], akin to the time-resolved spectroscopy for tracking atomic

motion in molecules with femtosecond laser pulses [87]. Limited by the pulse intensity, cur-

rently, experimentalists employ an XUV pump-IR (infrared) laser probe technique where

electrons generated by the XUV pulses are “steered” in the few-cycle IR laser field at vary-

ing pump-probe time delays [46, 47]. Although the basic principle of such measurements

can be qualitatively understood in terms of classical mechanics, quantitatively, the electron

spectra have to be calculated quantum mechanically. For simple laser-assisted photoioniza-

tion processes, such a quantum theory is readily available by solving the time-dependent

Schrödinger equation directly within the one-electron model. However, such calculations

are quite tedious and a simpler approximate theory based on the strong field approximation

(SFA) [5] has been found [41, 3] to be more useful for analyzing experiments.

In a time-resolved Auger measurement by Dresher et al. [40], the Auger electron

spectrum in the laser field was analyzed based on an ad hoc model that combined a rate

equation description of core-hole formation and subsequent quantum theory of Auger emis-

sion in the laser field. The theory has been improved recently by Smirnova et al. [50], and

Wickenhauser and Burgdörfer [88], where the hole formation and the decay process were

treated coherently, albeit starting with a somewhat complicated many-electron theory.

In this chapter, we generalize the strong field approximation to calculate the time-

resolved electron spectra of an autoionizing state created in a typical XUV pump-IR laser
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probe (XUV+IR) experiment. The validity of the SFA thus developed is checked by solving

the time dependent Schrödinger equation using a model Hamiltonian that simulates an

isolated autoionizing state populated in such XUV+IR experiments. From the simpler SFA

theory, we then illustrate how to extract the lifetime of either an isolated resonance or two

nearby resonances from the time-domain measurements. We noted that in typical XUV+IR

experiments, the attosecond XUV pulse was weak so that the initial autoionizing state is

created perturbatively. Thus resonance parameters for characterizing this step were already

available from measurements or from many-body calculations in the energy domain. Our

starting point was to cast the photoexcitation amplitude in the energy domain into the time

domain and then to propagate it in the IR laser field.

3.2 Quantum theory of laser-assisted Autoionization

3.2.1 Laser-dressed decay of a Lorentzian resonance

The energy spectrum amplitude from the decay of a Lorentzian resonance (e.g., Auger

decay) can be described by

f(E) = − 1

i(E − Er) − Γ/2
, (3.1)

where Er is the center energy of the resonance and Γ is the energy width related with the

lifetime of the resonance by τ = 1/Γ. The modulus square gives the well-known Lorentzian

resonance shape. In a time-dependent picture, the resonance can be considered as a contin-

uous electron emitting process (we focused only on electron emitting). The decay amplitude

in time domain is given by the Fourier transformation:

F (t) = exp(−iErt−
Γ

2
t) =

∫

E
dEe−iEtf(E). (3.2)
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Considering the resonant state populated by an XUV pulse, the photoelectron spec-

trum can be calculated pertubatively

b(~p, t) = i

∫ t

−∞
dt1 ~E(t1) · ~d(~p)f(E)eiIpt1−iE(t−t1), (3.3)

where ~d is the dipole transition moment, and E is the energy of the photoelectron. Inserting

the time-dependent decay amplitude, it can be rewritten as

b(~p, t) = i

∫ t

−∞
dt1 ~E(t1) · ~deiIpt1

∫ t

t1

dt2 exp

[(

−iEr −
Γ

2

)

(t2 − t1)

]

e−iE(t−t2), (3.4)

where t1 is the time that the resonant state is generated and t2 is the time that decay occurs

with the amplitude given in Eq. 3.2. The free propagation of the electron gives the energy

phase e−iE(t−t2).

Now we will generalize the equation to the case where a laser field is accompanying

the XUV pulse. Within the strong field approximation, the effect of Coulomb potential

and the ionization by the laser field itself is negligible, so the only role the laser field

plays is to modify the propagation of the photoelectron. Thus, the energy spectrum of the

photoelectron is given by

bL(~p, t) = i

∫ t

−∞
dt1

∫ t

t1

dt2 ~E(t1) · ~deiIpt1

× exp

[(

−iEr −
Γ

2

)

(t2 − t1)

]

× exp{−i
∫ t

t2

[~p+ ~A(t) − ~A(t3)]
2

2
dt3}, (3.5)

where ~A(t) is the vector potential related to the electric field by ~E(t) = −∂ ~A
∂t , Ip is the

ionization energy, and ~d is the dipole transition moment.

In this formulation, we assumed that the resonant state was populated through dipole

transition. It can be modified for the general case by replacing the dipole operator with an

appropriate transition operator corresponding to the specific transition. This formula can

be understood by considering a virtual three-step process: 1) the resonance state (doubly
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excited state or inner shell hole) is excited by XUV pulse at time t1; 2) the resonant state

decays at time t2 giving birth to a free electron (mathematically we can treat the decay

state as a state with complex energy propagating from time t1 to t2); 3) the free electron

with drift velocity -A(t2) propagates from t2 to t. When t goes to ∞, the vector potential

vanishes or goes to a constant A(∞), we have

bL(~p) = i

∫ ∞

−∞
dt1

∫ ∞

t1

dt2 exp

[(

−iEr −
Γ

2

)

(t2 − t1)

]

× exp{−i
∫ ∞

t2

[~p+ ~A(∞) − ~A(t3)]
2

2
dt3}

~E(t1) · ~d[~p+ ~A(∞) − ~A(t2)]e
iIpt1 . (3.6)

In this model, the IR laser does not participate in the creation of the resonance, and the

XUV pulse does not influence the propagation of the continuum electron after its creation.

We also assumed that the decay amplitude of the resonant state was not modified by the

laser. Thus, the continuum electron is born at time t2 with momentum ~p′, which is related

to the momentum ~p at time t when the external field vanishes by ~p′ = ~p+ ~A(t) − ~A(t2).

By rearranging the time order of the double integration, the theory presented in the

supplementary of [40] by Yakovlev et al. can be recovered . The equation above can be

rewritten as

bL(~p,∞) = i

∫ ∞

−∞
dt2 exp{−i

∫ ∞

t2

[~p+ ~A(∞) − ~A(t3)]
2

2
dt3 − iErt2}

×
∫ t2

−∞
dt1 ~E(t1) · ~d[~p+ ~A(∞) − ~A(t2) exp

[

−Γ

2
(t2 − t1)

]

ei(Er+Ip)t1

≈ i

∫ ∞

−∞
dt2 exp{−i

∫ ∞

t2

[~p+ ~A(∞) − ~A(t3)]
2

2
dt3 − iErt2}

×
√

ρ(t2)χ, (3.7)

where
√

ρ(t2) is the decay amplitude without the phase information and χ represents the

transition amplitude to the resonant state, which was induced by the dipole transition in

our case.
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3.2.2 Fano resonance theory revisited

The total Hamiltonian for a many-electron system can be written in a general form:

H = H0 + V, (3.8)

where V is the correlation potential not included inH0. Suppose we have one doubly excited

state located in the continuum of H0, what we try to do is to find the eigenstate of the full

Hamiltonian. Within zero-approximation, the doubly excited state is given by H0φ = Eφφ,

and the continuum is given by H0φE = EφE . Using these orthogonal states as bases, the

eigenstate of the full Hamiltonian can be found by solving the equation:

HΨE = EΨE . (3.9)

The couplings between these states by the full Hamiltonian are given by

< φ|H|φ > = Eφ

< φE′ |H|φE > = E′δ(E − E′)

< φE′ |H|φ > = < φE′ |V |φ >= VE′ . (3.10)

If the states φE′ are represented by a wavefunction with asymptotic behavior sin(k(E′)r+δ),

after rediagonalizing the Hamitonian matrix, one obtains the eigenstate:

ΨE = aφ+

∫

dE′bE′φE′ , (3.11)

where the coefficients are given by

a =
sin ∆

πVE
(3.12)

and by

bE′ =
VE′

E − E′
a− cos ∆δ(E − E′). (3.13)

The phase shift is given by

∆ = − tan−1 π|VE |2
E − Eφ − F (E)

, (3.14)
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where

F (E) = P

∫

dE′ |VE′ |2
E − E′

(3.15)

and

Γ = 2π|VE |2. (3.16)

Substituting bE′ into ΨE , we have

ΨE = aφ+ a

∫

dE′ VE′

E − E′
φE′ − cos ∆φE

= aΦ − cos ∆φE

=
1

πVE
Φsin∆ − φE cos ∆, (3.17)

where the modified doubly excited state is given by

Φ = φ+ P

∫

dE′ VE′φE′

E − E′
. (3.18)

If we introduce an operator q̂ such that 1
πVE

Φ = q̂φE , we have

ΨE = φE(q̂ + ǫ) sin ∆, (3.19)

where the normalized energy ǫ is defined as

ǫ =
E − Eφ − F (E)

1
2Γ

= − cot ∆. (3.20)

The transition probability from an initial state to one of the eigenstates is given by

| < ΨE |T |i > |2 = | < φE |T |i > |2 (q + ǫ)2

1 + ǫ2
, (3.21)

where q becomes a number. The ratio of the transition probability | < ΨE|T |i > |2 to

| < φE |T |i > |2 is described by the famous Fano profile:

f(E) =
(q + ǫ)2

1 + ǫ2
. (3.22)
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Standing wave condition is used in the formulation of the eigenstates ΨE above. If

incoming wave boundary condition

Ψ
(−)
E (r) → exp[−i(kr + δ + ∆)] (3.23)

is applied, where ∆ is the eigen-phase shift [89], Ψ−
E is given by

Ψ
(−)
E = φ

(−)
E (q̂ + ǫ) sin ∆ ∗ exp(−i∆)

= φ
(−)
E

q̂ + ǫ

i− ǫ
, (3.24)

representing a scattering state. The scattering amplitude from an initial state to one of the

scattering states is thus given by

< Ψ
(−)
E |T |i >= − < φ

(−)
E |T |i > q + ǫ

i+ ǫ
, (3.25)

and the q-dependent factor,

fF (E) =
q + ǫ

1 − iǫ
, (3.26)

describes the amplitude of the Fano profile in the energy domain, which can be decomposed

into

fF (E) =
q − i

1 − iǫ
+ i ≡ (q − i)

Γ

2
fL(E) + i, (3.27)

where fL(E) is the Lorentzian resonance profile. The modulus square of the q factor gives

the same Fano profile in Eq. 3.22.

3.2.3 Laser-assisted autoionization

As discussed in the previous section, an isolated resonance in the energy domain is

described by the Fano profile [90], (q+ǫ)2

1+ǫ2
, where ǫ = E−Er

Γ

2

is the reduced energy measured

from the resonance energy Er in units of half width Γ
2 . The parameter q measures the

relative strength of the formation of the “bound” state and the direct continuum. If the

interference between bound and continuum states is small and is neglected, we call it a
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Lorentz resonance. In the energy domain, such a resonance is described by the amplitude

1/[i(E−Er)−Γ/2]. In the time domain, after the Fourier transform, the amplitude decays:

F (t) = exp(−iErt− Γ
2 t). Under the strong field approximation [3] the probability amplitude

of finding a continuum electron with momentum ~p at time t after the laser pulse is over is

given by Eq. 3.5.

Equation 3.5 can be generalized to an isolated Fano resonance directly. Upon trans-

forming Fano profile given in Eq. 3.27 to the time domain, this would give the amplitude:

FF (t) =
Γ

2
(q − i)e−iErt−Γt/2 + iδ(t − 0). (3.28)

Note that the first term of Eq. 3.28 describes the decay of the “discrete” resonance and the

second term describes the prompt photoemission, both in the time-varying electric field of

the IR laser. This expression would replace the middle term in Eq. 3.5 in the calculation

of electron spectra for a Fano resonance. With a laser present, the first terms gives

Γ

2
(q − i)bL(~p, t), (3.29)

and the the second term gives

ibPI(~p, t) = i2
∫ t

−∞
dt′ ~E(t′) · ~d[~p + ~A(t) − ~A(t′)]

× exp

{

−i
∫ t

t′

[~p + ~A(t) − ~A(t′′)]2

2
dt′′ + iIP t

′

}

, (3.30)

where we have assumed that the dipole transition is not modified by the laser field. The

sum gives

bF (~p, t) = i

∫ t

−∞
dt1

∫ t

t1

dt2 ~E(t1) · ~deiIpt1 × exp

[

−i
∫ t

t2

(~p+ ~A(t) − ~A(t3))
2

2
dt3

]

×
{

Γ

2
(q − i) exp

[(

−iEr −
Γ

2

)

(t2 − t1)

]

+ iδ(t2 − t1)

}

. (3.31)

Clearly this theory reduces to the Fano theory for an isolated resonance in the energy do-

main in the absence of the IR laser. It also reduces to the SFA theory for laser-assisted
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photoionization given by Kitzler et al. [43] in the absence of the discrete resonance. Al-

though the derivation is for an autoionizing state, the theory can be applied to describing

Auger electron as well if the prompt photoelectrons and the Auger electrons do not inter-

act. We emphasize again that within the SFA, only the field free resonance parameters

are used and there is no need to calculate electron spectrum starting from the formidable

time-dependent many-electron Schrödinger equation.

3.3 Modeling two-electron systems in laser fields

The theory presented so far is based on the strong field approximation (SFA). The

validity of the SFA has been confirmed for laser-assisted photoionization [43] when the

photoelectron energy is large compared to the ponderomotive energy of the IR laser field.

To see if the present formulation using SFA is indeed valid, we solved the time-dependent

Schrödinger equation for a two-electron atom in the XUV + IR field within the two-state

approximation and with the same ansatz as in the SFA.

3.3.1 Construction of the two-channel Hamiltonian

Let’s start with the Hamiltonian of a two-electron system:

H = −1

2
∇2

r1
− 1

2
∇2

r2
+ V (~r1, ~r2). (3.32)

Applying the standard adiabatic approximation by choosing ~r1 as the adiabatic parameter,

the eigen wave function of this system can be written in the quasi-separable form:

Ψ(~r1, ~r2) =
∑

µ

Fµ(~r1)Φµ(~r2), (3.33)

where Φµ(~r2) is the channel function satisfying the following Schrödinger equation:

[

−1

2
∇2

r2
+ V (~r1, ~r2)

]

Φµ(~r2) = Uµ(~r1)Φµ(~r2). (3.34)
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The eigenvalue Uµ(~r1) is the potential surface under which electron 1 is moving. In gen-

eral, the adiabatic approximation is justified when the motion associated with the adiabatic

parameter is slower than the motion of the remaining degrees of freedom. Though it is obvi-

ously not true in the system we considered, it won’t affect the correctness of the formulation

since an infinite complete set of channel functions is implied in this formal theory.

In the presence of an external electromagnetic field E(t), the time-dependent Schrödinger

equation (TDSE) is given by

i
∂

∂t
Ψ(~r1, ~r2, t) =

[

−1

2
∇2

r1
− 1

2
∇2

r2
+ V (~r1, ~r2) + (~r1 + ~r2) · ~E(t)

]

Ψ(~r1, ~r2, t)inthelengthgaugewiththedipoleappr

(3.35)

Expanding the wavefunction on the set of eigen channels

Ψ(~r1, ~r2, t) =
∑

µ

Fµ(~r1, t)Φµ(~r2) (3.36)

and substituting it into the TDSE yields close-coupling equations (starting here, ~r1 is de-

noted as ~r)

i
∂

∂t
Fν(~r, t) =

[

−1

2
∇2

r + Uµ(~r) +Wνν(~r) + ~r · ~E(t)

]

Fν(~r, t)

+
∑

µ6=ν

WνµFµ(~r, t) +
∑

µ6=ν

~Rνµ · ~E(t)Fµ(~r, t), (3.37)

where Wνµ is the non-adiabatic coupling and ~Rνµ is the field-induced coupling of the two

channels and given by

~Rνµ =< Φν |~r2|Φµ > . (3.38)

Defining

Vν = Wνν , ν = 1, 2 (3.39)

and

Vc = W12, ~Rc = ~R12, (3.40)
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the TDSE for a model two-channel system is given by

i
∂

∂t
F1(~r, t) =

[

H1 + ~r · ~E(t)
]

F1(~r, t) + [Vc + ~Rc · ~E(t)]F2(~r, t)

i
∂

∂t
F2(~r, t) =

[

H2 + ~r · ~E(t)
]

F2(~r, t) + [Vc + ~Rc · ~E(t)]F1(~r, t), (3.41)

where

H1 = −1

2
∇2

r + V1(~r) (3.42)

and

H2 = −1

2
∇2

r + V2(~r). (3.43)

Rewritten in vector form, the coupled equations are given by

i
∂

∂t







F1

F2






=







H1 Vc

Vc H2













F1

F2






+







~r · ~E ~Rc · ~E
~Rc · ~E ~r · ~E













F1

F2






. (3.44)

In general, the non-adiabatic coupling includes a non-local term (e.g., the kinetic operator).

For our purposes we neglect the non-local coupling by assuming Vc is a local potential

depending only on ~r. The radiation coupling ~Rc depends on the properties of the specific

system and should be calculated from the first principle. In order to avoid this complexity

in the model, we approximate it as ~Rc = ~r since it has the dimension of a dipole moment.

In the simulation, we apply the following assumptions in accord with the analytical model:

1) only one resonant state is concerned; 2) the transition between two channels is through

the XUV light. The TDSE is thus approximated by

i
∂

∂t







ψ1

ψ2






=







H1 Vc

Vc H2













ψ1

ψ2






+







~r · ~El+x(t) ~r · ~Ex(t)

~r · ~Ex(t) 0













ψ1

ψ2






. (3.45)

Note we use subscripts ℓ and x to indicate electric fields from the laser and the XUV, respec-

tively. This model two-state Hamiltonian is constructed to include the essential ingredients

of exciting an autoionizing state in the XUV+IR fields. Without the upper “core” state

Φ2(~r2), the model reduces to a description of laser-assisted photoionization. The coupled

38



equations are to be solved using partial wave expansion. For definiteness, assume initially

Φ1(~r1) is an s-state. The weak XUV pulse will lead it to p-states only, while the IR laser

will couple it to many other angular momentum states via multiphoton processes. In the

numerical calculation, following the spirit of SFA, the basis functions for the lower channel

include the ground state and the continuum states only. For the upper channel, only one

bound eigenstate is included in the basis expansion. This will be a “bound” p-state which

is coupled to the ground s-state in the lower channel by the XUV pulse. Once this “bound”

p-state is formed it can decay to the continuum p-states of the lower channel through the

Vc term, resulting in autoionization as described by Fano [90].

3.3.2 Partial wave expansion

Following the discussion above, the channel wavefunctions are expanded as

F1 =
∑

l

fl(r, t)Yl(θ, φ) (3.46)

and

F2 = g1(r, t)Y1(θ, φ), (3.47)

where we have assumed the upper channel only consisting of a p partial wave resonance

only. Substituting them into Eq. 3.45, we have

i
∂

∂t

∑

l

flYl(θ) = H1

∑

l

flYl(θ) + Vcg1Y1(θ) + ~r · ~E(t)
∑

l

flYl(θ) + ~r · ~E(t)g1Y1(θ) (3.48)

and

i
∂

∂t
g1Y1(θ) = H2g1Y1(θ) + Vc

∑

l

flYl(θ) + ~r · ~E(t)
∑

l

flYl(θ) + ~r · ~E(t)g1Y1(θ). (3.49)

Multiplied by < Yl′ | and integrated over the spherical angles, the equations reduce to

i
∂fl′

∂t
=

∑

l

< Yl′ |H1|Yl > fl + Vcg1δ(l
′, 1) +A+B

i
∂g1
∂t

= < Y1|H2|Y1 > g1 + Vcf1 +B′, (3.50)
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where

A =
∑

l

fl < Yl′ |~r · ~E(t)|Yl >, (3.51)

B = g1 < Yl′ |~r · ~E(t)|Y1 >, (3.52)

and

B′ =
∑

l

fl < Y1|~r · ~E(t)|Yl > . (3.53)

We can see that the coupling Vc operates only on p-partial waves. Term A represents the

transition between different partial waves. Terms B and B′ represent the coupling between

two channels due to the light. Starting from the ground state bounded in the lower channel,

resonant state is populated by the XUV light only. Numerical examination shows the effect

of laser field on the transition to resonant state is negligible which is consistent with the

assumption presented in the analytical model. The reason behind the assumption is that

the transition by laser itself requires many more photons, which makes the transition rate

much smaller than with the single XUV photon excitation.

3.3.3 Scattering states with incoming wave boundary conditions

In this section, we apply the multi-channel quantum-defect theory [91] to the calcula-

tion of scattering states of a two-channel system at the energies that channel 1 is open and

channel 2 is closed. In general, there are four linear independent solutions for two coupled

second order differential equations at a given energy. Under the boundary condition that

the wave functions go to zero when r → 0, only two linear independent solutions exist, i.e.,

only the regular solutions, satisfying this condition. Note there are two components for each

solution, corresponding to channel 1 and channel 2. Our goal is to find the unique solution

with a component in the open channel that satisfies the incoming wave boundary conditions,
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and a component in the closed channel decaying exponentially, in the asymptotic region.

The boundary conditions are given explicitly as







ψ
(−)
o (r)

ψ
(−)
c (r)






→







i−1(2πk1)
− 1

2 (eik1r − Soe
−ik1r)

Sce
−k2r






, (3.54)

when r → ∞, where So and Sc are to be determined, subscripts o and c represent open

and closed channels, respectively. From the MQDT theory [91], we know that Ko is the

scattering matrix (just a number here, −eiδ

The whole configuration space can be divided into inner region (r ≤ R0) and outer

region (r ≥ R0). In the inner region, two linear independent solutions Fiβ can be steadily

found by propagating the wave functions from the origin forward to R0, where i and β

indicate the ith channel component of the βth solution. A few propagation methods are

available, e.g., Ruga-Kutta method. For sake of numerical ease, the starting point is chosen

as a small number r0 instead of 0 to avoid the singularity at the origin. The two solutions

are required to be regular at the origin (r0), thus the initial conditions for Fβ ’s can be

chosen as:






F11(r0) = 0 F12(r0) = 0

F21(r0) = 0 F22(r0) = 0






(3.55)

and






F ′
11(r0) = rl

0 F ′
12(r0) = 0

F ′
21(r0) = 0 F ′

22(r0) = rl
0






, (3.56)

where l is the angular momentum of the lth partial wave. Their derivatives are chosen as

above because the regular solution is proportional to rl+1 for l partial wave in a Coulomb

potential. The switch of the initial conditions between solution 1 and 2 is to make them

linear independent.

After two linear independent solutions are obtained, the appropriate linear combi-

nation of them will give the scattering wave function satisfying incoming wave boundary

41



conditions. If R0 is chosen large enough that the coupling is negligible, the wave functions

in the outer region coincide with Eq. 3.54. We can simply match the outer wavefunctions

to the linear combination of the two inner solutions at R0:

α1







F11

F21






+ α2







F12

F22






=







ψ
(−)
o (R0)

ψ
(−)
c (R0)






. (3.57)

Their derivatives need to be matched as well, thus we have four equations to be solved in

order to get the four unknowns. Once the unknown are found, the scattering states are

obtained in both the inner and outer region by plugging in these coefficients.

Another matching procedure based on [91] is given below. The two linear solutions

are matched to the linear combination of energy normalized asymptotic functions at R0

individually. A linear transformation of the two solutions in the whole space is applied

to obtain two new solutions that have outgoing component in a single channel. If both

channels are open, we can get all the physical quantity directly from these two solutions.

However, since the upper channel is closed, the outgoing component in this channel is not

physical. It has exponential growth and decay terms due to the negative energy. The

boundary condition for the close channel component are imposed thereafter to eliminate

the exponential growth term by making a linear combination of these two solutions, ending

up with a unique physical solution.

In both methods mentioned above, the matching distance R0 must be large enough to

ensure that the wave functions are given in the asymptotic form. Because of the exponential

growth term, the numerical propagation in the inner region gives very large wave function

values at R0, which makes the accumulated numerical uncertainty too large. In order to

control the amplitude of the wave function within the numerical limit, we used a different

approach; the wave functions were propagated forward in the inner region and propagated

backward in the outer region. In this case, it was no longer necessary to choose a very large

R0.
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In the inner region, we used forward propagation to get the two linear independent

solutions represented as F a
1 and F a

2 . In the outer region, the wave functions were propagated

from a very large distance b (numerically, it could be regarded as infinity) backward to

the matching distance R0. We considered three solutions in the outer region with initial

conditions at b as






F s
11

F s
21






=







ceikob

0






,







F s
12

F s
22






=







ce−ikob

0






,







F s
13

F s
23






=







0

e−kcb






; (3.58)







F
′s
11

F
′s
21






=







ikoce
ikob

0






,







F
′s
12

F
′s
22






=







−ikoce
−ikob

0






; (3.59)

and






F
′s
12

F
′s
22






=







0

−kce
−kcb






, (3.60)

where c is the energy normalization factor

c = i−1(2πko)
− 1

2 (3.61)

with ko related to the energy by ko =
√

2E. The physical solutions in the inner and outer

region are given by

Za = α1F
a
1 + α2F

a
2 (3.62)

and

Zs = F s
1 −KoF

s
2 +KcF

s
3 (3.63)

respectively. They are matched at Rc under these matching conditions:

Za(Rc) = Zs(Rc)

Z
′a(Rc) = Z

′s(Rc). (3.64)

Solving this linear system gives the four unknowns (α1, α2,Ko,Kc). Therefore, the scatter-

ing wave functions satisfying incoming wave boundary conditions are obtained in the whole
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space. This method is implemented in the code package ADQF from CPC [92]. We have

modified the original code to adapt for photo-absorption processes.

3.3.4 Numerical procedure of solving two-channel time-dependent Schrödinger

equation

In the numerical simulation, we performed the following tests to check the reliability

of the results.

First, we checked the scattering states to make sure they are calculated correctly and

that the photoionization spectrum showed Fano resonance shape. The time-independent

Schödinger equations were solved for angular momentum l = 1 to get the scattering states

|Ψ(−)
E (r) >= M (−)

o (r) +M (−)
c (r) (3.65)

with incoming wave boundary conditions for different energies, where o and c denote the

open and closed channel component respectively. The reduced transition dipole moment

from an initial state |ψg(r) > of s-parity to the continuum satisfying incoming wave bound-

ary condition is given by

A(−) =< Ψ
(−)
E (r)|r|Ψg > . (3.66)

The photoionization cross section is calculated from the dipole moment using the Fermi

Golden rule, showing a Fano resonance shape with parameters depending on the two-channel

coupling. Thus, the Fano resonance shape can be readily obtained using this method.

Second, we tested the propagation method and checked to make sure the box size

was large enough that non-physical reflection from the boundary did not come into play.

The time-dependent Schrödinger equation was solved using the splitting-operator method.

Only the interaction of the atom with the XUV pulse was taken into account in this stage.

After propagating the initial wave function |ψg(r) > to the time when the XUV pulse was

off, we projected the final wave function to the scattering states to get the spectrum [93]
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shown in Fig. 3.2. The spectrum calculated in this way was consistent with that obtained

from the convolution of the cross section with the XUV pulse intensity profile using the

perturbation theory.

Finally, we took the laser field into account to examine how the spectrum was changed

by the laser field. The wave function is again propagated using split-operator method

ψ(r, l, t + dt) = e−i H
2

dte−iV dte−i H
2

dtψ(r, l, t), (3.67)

which is implemented in the pseudo-spectral representation [94, 95] but generalized to two-

channel cases. The model system in the combination of XUV and laser pulses were thus

solved numerically.

3.4 Time-resolved autoionization spectra

In this section, we first compare the photoelectron spectra of a Fano resonance in

the XUV + IR field calculated from the SFA model and the numerical method, and then

present time-resolved autoionization spectra calculated using Eq. 3.31. We made a model

atom with potentials V1 and V2 and their coupling Vc as shown in Fig. 3.1.

The asymptotic energy separation of the two potentials was chosen to be 27.21 eV.

With the chosen potentials, the resonance parameters were calculated: Er=22.9 eV (mea-

sured from the first threshold), Γ=0.055 eV (lifetime of 12 fs) and q = −4.2. These resonance

parameters are used to generate the photoelectron spectra in the strong field approxima-

tion using Eq. 3.31. Meanwhile the coupled time-dependent Schrödinger equations for the

model atom in the XUV+IR fields are solved numerically to obtain the photoelectron spec-

tra. We assume that the time dependence of both the XUV and that the IR laser pulses

are Gaussian and the few-cycle IR laser has a carrier envelope phase φ.

In Fig. 3.2, we compare the angle-integrated photoelectron spectra obtained with

the following parameters: XUV pulse duration 500 as, central photon energy 39 eV, and
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Figure 3.1. Potential curves for a model two-channel system. Black, red and green curves
represent V1, V2 and Vc respectively. The energy gap between two thresholds is 21.7 eV.
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Figure 3.2. Laser-dressed total photoelectron spectrum for an autoionizing state created
in XUV+IR laser fields. The spectra from the strong field approximation and from the
numerical calculations are shown to agree with each other. The electron spectrum in the
absence of lasers is also shown. See text for the parameters used in the calculation.
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peak intensity 1012 W/cm2; with a laser duration of 5 fs, the central photon energy is 1.65

eV, peak intensity is 1012 W/cm2, and the carrier envelope phase φ=0. The spectra are

obtained with no time delay. The comparison shows that the numerical result from the

model calculation and from the SFA agree quite well. The Fano profile of the resonance is

significantly modified by the laser field and evidences of possible sidebands appear (see later)

at 1.65 eV from the resonance on both sides. Other tests show similar general agreement.

Thus we will use the SFA model developed here to calculate the electron spectra in XUV+IR

experiments.

We next compare the present SFA prediction for the photoelectron spectra in the

forward direction with the Auger electron spectra from the recent calculations of Smirnova

et al. [50], using the same resonance parameters. The XUV has a pulse length of 0.5fs, a

mean photon energy of 60 eV and a peak intensity of 1012W/cm2, while the IR laser has a

duration of 6.5 fs, a photon energy of 1.5 eV and a peak intensity of 1011W/cm2, and φ=0.

Two Lorentz resonances with lifetimes of (a) 0.2 fs and (b) 2.0 fs, are considered. Figs.

3.3(a) and 3.3(b) shown here are to be compared to their Figs. 2(a) and 2(c), respectively.

Although the formation of the resonance is different in the two cases, the dependence of the

electron spectra on the laser carrier phase and on the lifetime of the resonance are similar.

For the short lifetime resonance, the electron spectrum is broadened significantly. For the

longer lifetime state, the sidebands are clearly resolved. In Fig. 3.3 (c) we show the electron

spectra in the forward direction for a Fano resonance, with the parameters used in Fig. 3.2

but at different time delays, calculated from the SFA. Electron spectra from the isolated

Lorentz resonance part and from the direct photoionization part are shown for each time

delay as well. For the Lorentz resonance alone the sidebands are clearly seen. For direct

ionization the electron spectrum is broadened and its center shifts with the time delay. The

shift stops when the XUV pulse and the IR laser do not overlap in time any more, as shown
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Figure 3.3. Streaked electron spectra in the forward direction for two Lorentz resonances
of lifetime of (a) 0.2 fs and (b) 2 fs, excited by a 0.5 fs XUV pulse. The XUV-laser delay
time is zero and two carrier envelope phases are shown: 0 (solid) and π (dashed). For other
parameters used, see text. (c) Laser modified electron spectra (black) for a Fano resonance
at different time delays. Also shown are the electron spectra of the Lorentz resonance alone
(red) and the photoionization alone (green). Parameters for the resonance, the XUV and
the laser are as in Fig. 3.2 .

for the delay of 5 fs. The total electron spectrum, as the result of interference, appears to

be highly “irregular” with respect to electron energy and to the time delay.

Using the present theory, let us analyze the procedure used by Drescher et al. [40] for

deducing the Auger (or Lorentz resonance) lifetime based on the area of the first sideband

for varying time delay between the XUV pulse and the IR laser. In Fig. 3.4 (a) we show

the area of the first sideband for electron energy between 20.4 and 22.1 eV versus time

delay from -10 fs to 25 fs for a Lorentz resonance represented by the parameters in Fig.3.2
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Figure 3.4. (a) Electron counts in the forward direction for a Lorentz resonance within the
first sideband [20.4,22.1] eV vs time delay, shown for two carrier envelope phases of the
laser and the counts after phase average. (b) Similar electron counts for a Fano resonance
for electrons within the energy of [20.4,22.1] eV. The smooth curve gives the counts for the
corresponding Lorentz resonance part, except vertically shifted by a constant .

(examples of these sidebands can be seen in Fig. 3.3 (c)). Calculations were shown for two

carrier envelope phases: 0 and π/2. Note that for the small time delay, there is a weak

dependence on the carrier envelope phase. For the larger time delay where the XUV and

IR pulses do not overlap in time, there is no such phase dependence. On the other hand,

by averaging over the carrier envelope phase, a smooth curve is recovered and the result is

similar to what was observed by Drescher et al. [40]. Note that the modulation in Fig. 3.4

(a) at a smaller time delay is separated by 2.5 fs –the period of the IR laser.

Can the lifetime of a Fano resonance be extracted in a similar manner in view of

the fact that the electron spectra, with respect to the time delay, as seen in Fig. 3.3 (c),

do not show any clear sidebands? In Fig. 3.4 (b), we show the electron counts within the

interval [20.4, 22.1] eV, as in the isolated Lorentz resonance, versus the time delay. For small
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Figure 3.5. (a) Streaked electron spectra within the first sideband vs time delay for two
nearby Lorentz resonances excited by an attosecond pulse. (b) The oscillatory total electron
counts within the sideband vs time delay can be fitted to extract the lifetimes of the two
resonances and their energy separation, see text .

time delays, there are large oscillations. But for long time delays, the oscillation becomes

weaker. In Fig. 3.4 (b), the smooth line is from the Lorentz resonance part alone, except

when shifted by a constant. This clearly shows that interference from the direct ionization

is small at large time delays and the smooth curve can be fitted by an exponential law

exp(−Γtd) (td is the time delay), from which the lifetime of the resonance is extracted. In

fact in such an analysis we have tested that the extracted lifetime is independent of the

specific selection of the energy bins used for the total electron counts.

The present formulation can be easily extended to obtain electron spectra for two

nearby resonances. Consider two Lorentz resonances at 24.8 eV and 25.0 eV, with lifetimes

of 30 fs and 40 fs, respectively, created by a 0.5fs XUV pulse at a peak intensity of 1012

W/cm2 into an IR laser of 10 fs, a frequency at 1.65 eV and a peak intensity of 1012 W/cm2.

The streaked electrons from the two resonances will interfere. In Fig. 3.5 (a) we show the
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spectra near the first sideband versus the time delay. One can see clearly that the electron

spectrum shows oscillations within the sideband. The total electron counts within (22.4,

24.0) eV versus the time delay are shown in Fig. 3.5 (b). The damped oscillations can be

fitted by c1e
−Γ1td + c2e

−Γ2td + c12e
−(Γ1+Γ2)td/2 cos(∆Etd + φ0), where td is the time delay,

from which one can extract the two lifetimes and the energy separation ∆E between the

two resonances. (Note: The line in the figure was fitted with the two given lifetimes and

the input energy separation.)

In summary, we have presented a quantum theory for describing the photoelectron

spectra of an autoionizing state created by an attosecond XUV pulse in the streaked few-

cycle IR laser field within the strong field approximation that is expected to form the basis of

future time-resolved experiments on resonances with attosecond pulses. We illustrated the

utility of the theory by extracting the lifetime of an isolated and two nearby resonances from

the time-resolved electron spectra. Future work may involve the possibility of extracting the

q parameter of a Fano resonance and applications to more resonances. We comment that

no real strong field effects are included in the present theory. For higher IR laser powers,

one may expect new resonances to appear, similar to the new resonances induced by the

static electric field [96]. In such cases, there is no clear alternative but to develop a real

time-dependent many-electron theory.
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Chapter 4

Alignment-dependent ionization of diatomic molecules

4.1 Introduction

In the past few decades, much interest has been devoted to exploring the nonper-

turbative interaction between molecules and intense lasers. Problems of basic scientific

and practical importance include the orientation, steering and focusing of molecular beams

[97, 98, 99]. In particular, the ionization of molecules by short pulse lasers may be used

as soft ionizer [100] for large molecules and for efficient high-order harmonic generation

(HHG) into the soft X-ray region [101]. Further development of these and other applica-

tions of intense lasers to manipulate molecules requires a solid theoretical foundation for

understanding the detailed dynamics of molecules in strong laser fields. While several simple

theoretical models [5, 77, 78, 6] have been successfully employed to interpret the ionization

of atoms in intense laser fields, these models have limited usefulness for molecules.

Unlike atoms, molecules are not isotropic systems, and it is clear that the ionization

rate can be strongly influenced by the alignment angle θ between the molecular axis and

the laser electric field vector. Since the rotation period of a typical molecule (a few ps)

is much longer than the pulse duration (100 fs or less) of Ti:Sapphire lasers, each ioniza-

tion can be considered to occur for a molecule fixed in space. The ionization rate of such

an aligned molecule in a laser field can be calculated in principle as for atoms, but few

calculations have been done [102, 103] because of computational complexities. To achieve

a general understanding of laser-molecule interactions we thus developed a molecular tun-

neling ionization model for calculating the ionization rate of molecules in an intense laser

field [104]. This model is an extension of the ADK (Ammosov-Delone-Krainov) model [6]

for atoms, which has been successfully used for describing the ionization rate of an atom

in the tunneling ionization regime. The MO-ADK model has been used to calculate the
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ionization rates for molecules and the results have shown good agreement with experimen-

tal data [55, 56, 58, 59]. The MO-ADK model also has successfully interpreted the origin

of the so-called ionization suppression for some molecules [104]. In order to compare with

experiments, the ionization rates predicted by the MO-ADK model have to be averaged

over an ensemble of randomly distributed molecules. Thus, the alignment dependence of

the ionization rate is not tested directly. In this chapter, we discuss the determination of

such alignment dependence in a double-pulse experiment.

We started with a short pump laser and waited for the molecules to be aligned

at a later time (a few picoseconds) when they undergo “rotational revival” [105, 106].

During this interval, which lasts for a few hundred femtoseconds, the degree of alignment

of the molecules changes rapidly. A second short probe laser is used to ionize these aligned

molecules, and the ionization yield can be measured against the delay time between the two

pulses. The short pulses are used to better align the molecules during free propagation after

the field. Within this limit, the effect of the laser field on the rotation of the molecule can

be described by the rigid rotor model[107, 106, 108, 109]. Within this model, the alignment

of the molecules in the laser field can be calculated using quantum mechanics, but the effect

can also be understood by treating the rotor motion classically. The angular distribution

of molecular axes can be determined by Coulomb exploding the molecules [62, 63]. MO-

ADK model is thus tested from the alignment dependent ionization rates of molecules. On

the other hand, the alignment dependent ionization rates provide information about the

molecular structure. By examining the differences in ionization of N2 and O2 molecules,

the role of the valence electron orbital is identified.

In this chapter, we will first discuss the theory for field-free alignment and rotational

revival of molecules, then briefly discuss the MO-ADK theory, and present the alignment-

dependent ionization rates for diatomic molecules N2 and O2. Finally, we discuss the

pump-probe experiment for determining the alignment dependence of ionization rates.
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4.2 Alignment of molecules by lasers: The classical rotor model

The complete description of molecules in laser fields involves the coupling of lasers

with the different degrees of freedom of molecules: electronic motion, vibrational motion,

and rotational motion (translation motion and spin freedom are not explicitly considered).

The time scales associated with each of these motions are quite different, roughly about

attoseconds for the electronic motion, femtoseconds for the vibrationl motion, and picosec-

onds for the rotation motion. Therefore in general, these motions are weakly coupled. If

we are only focusing on the rotation of molecules in a weak laser field, we can neglect all

the other degrees of freedom, i.e., assuming no ionization, no electronic and no vibrational

excitation, and thus the molecules are modeled as rigid bodies, or rigid rotors for diatomic

molecules. The dipole moment of a molecule in a weak static electric field is given by

~µ = ~µ0 +
1

2
~~α~E (4.1)

where µ0 is the permanent dipole moment that is zero for homonuclear diatomic molecules.

The second term is from the induced dipole moment by the field. Higher order terms are

usually weaker and can be neglected. Here α is the anisotropic polarizability tensor of the

molecular electronic ground state with two principal components α‖ and α⊥, parallel and

perpendicular to the molecular axis, respectively. (Note that the definition of polarizability

can differ by a factor of 1/2 in some literatures.) The induced dipole moment is explicitly

given by

1

2
~~α~E =

1

2
[α‖E cos θê‖ − α⊥E sin θê⊥] (4.2)

in the body frame, where θ is the angle of the molecular axis with respect to the electric

field and ê‖ and ê⊥ represent, respectively, the direction parallel and perpendicular to the

molecular axis. The electric field vector is given in the body frame by

~E = E cos θê‖ − E sin θê⊥. (4.3)
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For molecules in a weak linearly polarized laser field, assuming that the polarizability

is the same as that in a static field, the classical rotational motion is governed by Newton’s

equation:

I
d2θ

dt2
= ~µ× ~E(t) (4.4)

where I is the moment of inertia of the molecule and is related to the rotational constant

by B = 1
2I . The torque exerted on the molecules is given by

~µ× ~E(t) = µ0E(t) sin θ − 1

4
αE2(t) sin 2θ (4.5)

with α = α‖ − α⊥ determined by the anisotropic polarizability of the molecules.

4.3 Adiabatic alignment

4.3.1 Classical description

Considering a laser field with optical period (2.7 fs for typical Ti-Sapphire laser field)

much shorter than the rotational period, the equation of motion averaged over a laser cycle

(from Eq. 4.4 and Eq. 4.5), reduces to

d2θ

dt2
= −αE

2
0

8I
sin 2θ. (4.6)

This is an equation describing the motion of a pendulum. Note the permanent dipole term

vanishes after averaging over one cycle. Applying small angle approximation, the equation

reduces to

d2θ

dt2
= −αE

2
0

4I
θ ≡ −ω2

pθ (4.7)

where ωp is the pendular frequency. Under this approximation, all molecules in the ensemble

rotate at the same frequency and oscillate around the laser polarization direction. In this

case, the alignment time might be defined as one quarter of the period of the pendular

motion [105]. For N2 molecules (rotational constant 2 cm−1) in a laser field of intensity
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2.5 × 1012 W/cm2, the alignment time is about 400 fs. For molecules in a pulse, averaging

over laser cycles can still be performed to simplify the calculation when the pulse duration

is much longer than the laser period, which ends up with the pendulum equation depending

only on the field intensity profile [110]. However, this approximation does not hold for

ultrashort laser pulses and the equation has to be solved numerically without averaging

over the cycles [111]. By examining the trajectories of the angle between the molecular

axis and the laser polarization direction, it was found [111] that as the laser intensity

increases, the torque exerted on the molecule begins to cause reorientation; further increase

in intensity leads to ionization, bond stretching and multiple ionization which are not taken

into account in the rigid rotor model. If the laser field is high enough, oscillation about

the polarization direction happens. However, for longer pulses, the oscillation amplitude is

very small showing adiabatic alignment. In order to take the initial random orientation of

molecules into account, a Monte-Carlo-like simulation will be necessary. We will not discuss

this since the ensemble effect can be best investigated quantum mechanically as described

below.

4.3.2 Quantum mechanical treatment: Pendular States

The Schrödinger equation for a linear rotor in a laser field E(t) = E0 cosωt with

duration τp is given by

[BĴ2 + Vµ(θ) + Vα(θ)]ψ(θ, φ) = ǫψ(θ, φ) (4.8)

where B is the rotational constant 1
2I and where

Vµ(θ) = −µ0E(t) cos θ (4.9)

Vα(θ) = −E
2

2
(α‖ cos2 θ + α⊥ sin2 θ) (4.10)

are the interactions of the laser field with the permanent and induced dipole moments.

This effective Hamiltonian can also be derived from the full Hamiltonian by approximately
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averaging over the faster vibrational motion, the electronic motion and the rotation. In the

long pulse limit (ω ≫ 1
τp

), averaging over cycles gives

[BĴ2 − E2

4
(α‖ cos2 θ + α⊥ sin2 θ)]ψ(θ, φ) = ǫψ(θ, φ) (4.11)

When the laser field goes to zero, it describes a field-free rotor, and when the field goes

to infinity, it describes a 2-dimensional liberator. The eigenstates thus can be labelled

by |M | and energies that correlate adiabatically to the field free rotational states in the

low field limit and to the liberator states in the high field limit. The alignment parameter,

measured by cos2 θ, for the pendular states can be evaluated as shown in [112, 113]. Starting

from one of the field free rotational states, the wavefunction will adiabatically evolve to a

pendular state that depends on the laser intensity. The degree of alignment depends on

which pendular state it will reach. The pendular state is not an eigenstate of the free rotor.

Instead, it is a superposition of the field-free rotational states. In order to align a molecule

initially from one of the rotational states, excitation to other states must occur to get the

appropriate coherent superposition of rotational states to construct a pendular state. In

other words, the interference between different rotational states is important in aligning

molecules.

4.4 Dynamic alignment

4.4.1 Kick model and field-free alignment

The time-dependent Schödinger equation describing a rotor in a linearly polarized

laser pulse is given by

i
∂ψ(θ, φ, t)

∂t
= [BĴ2 + Vα(θ, t)]ψ(θ, φ, t).

Here we consider only laser fields with far-off resonance frequencies (no laser induced reso-

nant excitation), and the permanent dipole term is neglected, assuming the laser frequency
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is much larger than the rotational frequency. The magnetic quantum number m is con-

served in this process. Only even or odd rotational states (depending on the initial state)

are excited through the induced dipole interaction.

When the pulse is much longer than the rotational period, i.e., in the adiabatic limit,

this equation reduces to that of the laser-induced pendular motion studied in the previous

section. If the pulse is much shorter than the rotational period, the interaction can be

considered as an impulse and treated by the so-called kick model. Assuming the molecular

axis is frozen within the duration of the short pulse (much less than the rotational period),

we can neglect the kinetic energy part on the right. The wavefunction at the time of the

kick is given by

ψ(τp) = exp(−i
∫ τp

0
Vα(θ, t)dt)|ψ(0) >=

∑

J

CJ |JM >, (4.12)

which has been expanded in terms of field-free rotational states. After the pulse is turned

off, the molecular wavefunction continues to propagate in the free space,

ψ(t+ τp) =
∑

J

CJe
−iBJ(J+1)t|JM > . (4.13)

Between the adiabatic and impulsive limits, the time-dependent Schödinger equation

has to be solved numerically. In the simulation, the TDSE is solved independently for each

individual initial rotational state |JM > ( up to J = 40) using the split-operator method

[94, 95]. Assuming the Boltzman distribution of the rotational levels at the initial time, the

alignment parameter at a given temperature is defined by

< cos2 θ >=
∑

J

wJ

M=J
∑

M=−J

< cos2 θ >JM , (4.14)

where the ensemble average has been taken and wJ is the Boltzman factor. This measures

the degree of alignment and has a value of 1
3 for a randomly distributed molecular ensemble.
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For homo-nuclear diatomic molecules, statistics of nuclei spin must be taken into

account as well. The total wavefunction of a molecule can be written as

Ψtotal = Ψelectron(R,~r)ΨrotationΨnuclearspin. (4.15)

If the two nuclei are bosons of spin I, the total wavefunction should be symmetric under the

exchange of the two nuclei. Among the (2I+1)2 degeneracy of the nuclei spin, (2I+1)(I+1)

are symmetric and (2I + 1)I are antisymmetric. The rotational partition function can thus

be written as ggZg + guZu, where gg and gu are the statistics factors for symmetric and

antisymmetric nuclear spin states respectively and given by

gg =
i+ 1

2i+ 1
, gu =

i

2i+ 1
. (4.16)

The associated partition functions Zg and Zu are only for even or odd rotational states

depending on the statistics of the nuclei spin and the symmetry of the molecules. The

symmetry property of the rotational wavefunctions is that they are symmetric for even J

and antisymmetric for odd J, For the electronic wavefunction, the interchange of the two

nuclei amounts to change ~R to −~R. This change is even for Σ+
g and Σ−

u and odd for Σ−
g

and Σ+
u . Thus for 16O2 which has a 3Σ−

g ground state and I = 0, even J will go with

antisymmetric nuclei spin states with weight 0 and odd J go with symmetric nuclear spin

state with weight 1. Thus all the even J rotational states are missing. For H2, a similar

argument shows that even even J has a weight of 1 and odd J has a weight of 3.

As an example, Fig. 4.1 illustrates how the alignment parameter of oxygen molecules

changes with time based on numerically solving TDSE. Within the pulse duration, the

molecules achieve little alignment, which means essentially that the molecule just experi-

ences a kick. The kick imparts a rotational angular momentum to each molecule. Thus,

even after the kick is over, the molecules continue to rotate until the alignment reaches a

maximum. After the maximum alignment, the continual rotation of the molecules reduces
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Figure 4.1. Alignment of N2 molecules by a laser pulse with intensity 2 × 1013 W/cm2,
duration 250 fs. Dashed line depicts the laser intensity profile. Red line shows the alignment
parameter < cos2 θ > for N2 molecule initially in J=0 rotational state. Green lines shows
the thermal averaged alignment parameter at room temperature 300 K.

the degree of alignment until they reach further alignment at periods of rotational revival.

Such rotational revival is seen for both individual initial rotational states and for the ther-

mally distributed ensemble of molecules. This phenomenon of field-free alignment can be

explained qualitatively, either from classical or quantum mechanical point of view, and has

been first addressed in [106].

According to classical mechanics, we consider an ensemble where all the molecules

are randomly aligned before the kick. The amount of angular momentum transferred to

the molecule by the kick can be calculated from the torque, which is the derivative of the

interaction potential. Torque is given by

∆Jtransfer ∝ − sin 2θ, (4.17)

suggesting that molecules initially at larger angles get higher angular momentum transferred

and thus would start rotating faster. Later, they will catch up with those molecules, initially
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at the smaller angles, and thus localization of the density occurs and maximum alignment is

achieved. Afterwards, the molecules keep rotating with different velocities and the alignment

is destroyed.

From the viewpoint of quantum mechanics, narrow angular alignment requires a broad

distribution of rotational angular momenta from the kick. However, broad distribution does

not necessarily gives narrow angular distribution. They have to interfere constructively.

After the pulse, the wave packet keeps evolving freely. The phases of different rotational

components are proportional to the product of the rotational energy and time. Because the

rotational energies for different angular momentum components are quantized, the phases

from the different components add coherently at the time of rotational period T of the

molecule. The alignment of molecules at these times is said to undergo full rotational

revival. Quarter- and half-revival also occur at T/4, T/2, 3T/4, etc. For other times, the

phases from different rotational components interfere more randomly, and the molecules

lose alignment.

In the language of optics, the rotational wave packet is chirped by the kick. It is sim-

ilar to the optical interference from a grating. In order to narrow the angular distribution,

the chirp need to be compensated. The analogy in optics is to compress a chirped pulse.

In order to compensate the chirp, light is sent to pass through a dispersive medium like

a piece of glass. In the case of rotational revival, free propagation is naturally dispersive,

because the energy factor for each rotational component J is proportional to J(J+1). After

a certain time, the phases are compensated to give maximum alignment. From this point of

view, the control of rotational wave packet is analogous to controlling a pulse, which leads

to possible quantum information processings [114].

A larger kick is desired in order to best aligning the molecules during the post-pulse

propagation. Because ionization will destroy the molecules, we want to keep the ionization

rate small while giving a larger kick. This leaves only one option: increasing the pulse
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duration. However, if the pulse is too long, the kick model fails. The molecules are pushed

adiabatically to one of the pendular states in the laser field and thus return to the original

field-free rotational state upon the adiabatic turn-off of the laser field. The alignment will

vanish after the pulse is over. Therefore, an optimal pulse duration distinguishing the kick

and the push limits exists for a given laser intensity. Take the pulse intensity of 2 × 1013

W/cm2 with pulse duration of 250 fs. From the MO-ADK theory, we calculated that the

ionization probability for such a pulse is less than 10−10 for N2 and less than 10−8 for O2.

By varying the duration of the pulse, and solving the TDSE numerically, the degree

of alignment versus the pulse duration is obtained and optimal pulse duration can be found.

Fig. 4.2 shows how the alignment depends on the pulse duration for N2 and O2 molecules at

a variety of temperatures. Clearly the molecules are better aligned at lower temperatures.

In the plot, the alignment is more prominent at 25 K. For a pulse shorter than the optimal

duration, the alignment is increased monochromatically with pulse duration suggesting that

the laser-molecule interaction can be treated as a kick. The optimal pulse duration is related

to the rotational constant of molecules. It is found that the optimal pulse duration is 300

fs for O2 molecules and 250 fs for N2 molecules, assuming that no ionization occurs.

4.4.2 Field-free rotational revival and partial revival

After the pulse ends, the rotational wave packet propagates freely. Though the prob-

ability of the projection on different rotational components is constant, the phase varies

linearly with time. Because the energies of different rotational components are integer mul-

tiples of 2B, i.e., EJ = BJ(J+1), after the pulse, the wavefunction repeats itself periodically

with a revival time

Tr =
π

B
, (4.18)

where the alignment parameter also reaches its maximum periodically. However, detailed

study on the alignment parameter reveals more structures [63].
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Figure 4.2. Dependence of the maximum alignment on the durations of pump pulses at a
peak intensity of 2× 1013 W/cm2 for N2 and O2 molecules at three temperatures indicated
in the plot.
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Figure 4.3. Alignment parameter < cos2 θ > of N2 and O2 molecules at temperature 300K
vs time after pumped by a laser pulse with intensity 2 × 1013 W/cm2 and duration 250 fs.

63



Figure. 4.3 shows how the calculated alignment parameters change with time for

N2 and O2 molecules at room temperature 300 K. The revival period Tr is about 8 ps for

N2 and 12 ps for O2. However at half and quarter period, the alignment parameter shows

partial revival, especially the alignment is reversed at half period [108, 115]. The partial

revival phenomena are explained in the following discussion.

From the expansion of the wavefunction, the alignment parameter is given by

< ψ| cos2 θ|ψ >=
1

3
+

1

3

√

16π

5

∑

J,J ′

C∗
JCJ ′e−i∆EJJ′t < JM |Y20|J ′M > . (4.19)

The coupling matrix element of the second term on the right is nonzero only when J ′−J =

±2 due to the symmetry property of operator Y20. The interference between J and J ′ states

gives the time-dependent phase factor

cos[−Bt[(J + 2)(J + 3) − J(J + 1)] + φ] = cos[−2B(2J + 3)t+ φ]. (4.20)

Experimentally, the distribution of the rotational states, or the beat frequencies between

different states have been explored from the transformation of the alignment parameter

which is measured by Coulomb exploding the molecules [63]. The observed beat frequencies

show direct evidence of Eq. 4.20.

Because the rotational states with even and odd parities mix up due to the statistics,

the calculation of alignment parameter for the whole ensemble can be separated into two

parts:

ggZg < cos2 θ >g, guZu < cos2 θ >u . (4.21)

Whenever the time is multiples of Tr, the alignment parameter repeats itself giving full

revival of alignment. At time Tr

2 , cos[−2B(2J + 3)t+ φ] changes its sign for both even and

odd symmetry rotational ensembles, maximum and minimum switches, reversed revival is

obtained. At time Tr

4 , the phase factors cos[−2B(2J + 3)t+ φ] for the sub-ensemble g and

u are opposite signs. If the average of Y20 for the two sub-ensembles are approximately
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equal (a good approximation for ensembles at high temperature), the alignment parameter

is given by

1

3
+

1

3

√

16π

5

ggZg − guZu

ggZg + guZu
< Y20 > (4.22)

or

1

3
+

1

3

√

16π

5

gg − gu

gg + gu
< Y20 > (4.23)

at high temperature assuming Zg = Zu. If the statistical factors gg and gu give equal

weight, then partial revival will disappear. For N2 molecules, the degree of partial revival

alignment at Tr

4 and 3
4Tr is only 1

3 of that at full revival time. For O2 molecules, no even J

rotational states, the degree of alignment at Tr

4 and 3
4Tr has the same order of that at the

full revival time.

4.5 Molecular tunneling ionization theory

The ADK theory for ionization of atoms in a laser field is based on the tunneling of

an electron through the suppressed potential barrier of the combined atomic field and the

external electric field. For a static electric field and for a hydrogenic atom the tunneling rate

can be calculated analytically. The ADK theory is obtained by modifying the analytical

formula by considering nonhydrogenic atoms. The chief among them is the modification of

the radial wave function of the outermost electron in the asymptotic region where tunneling

occurs. To obtain tunneling ionization rates for molecules, similar considerations on the

electronic wave functions in the asymptotic region have to be considered. The ADK model

for atoms was derived for an electronic state that initially has a well-defined spherical

harmonics. To employ analytical expressions for the ionization rates for molecules, one

has to express the molecular electronic wave functions in the asymptotic region in terms of

summations of spherical harmonics in a one-center expansion. In the molecular frame, the
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asymptotic wave function of a valence electron in a diatomic molecule at large distances

can be expressed as (recall that atomic units m = h̄ = e = 1 are used)

Ψm(~r) =
∑

l

ClFl(r)Ylm(r̂), (4.24)

with m being the magnetic quantum number along the molecular axis. We normalize the

coefficient Cl in such a way that the wave function in the asymptotic region can be expressed

as

Fl(r → ∞) ≈ rZc/κ−1e−κr, (4.25)

with Zc being the effective Coulomb charge, κ =
√

2Ip, and Ip being the ionization potential

for the given valence orbital. Here, we assume that the molecular axis is aligned along the

external field direction. The valence electron will be ionized along the field direction at

θ ≈ 0. The leading term of the spherical harmonic along this direction is

Ylm(r̂) ≃ Q(l,m)
1

2|m||m|! sin|m| θ
eimφ

√
2π
, (4.26)

with

Q(l,m) = (−1)m

√

(2l + 1)(l + |m|)!
2(l − |m|)! . (4.27)

The wave function in the tunneling region can be written as

Ψm(~r) ≃ B(m)rZc/κ−1e−κr2|m||m|! sin|m| θ
eimφ

√
2π

(4.28)

with

B(m) =
∑

l

Clm(−1)m

√

(2l + 1)(l + |m|)!
2(l − |m|)! . (4.29)

Following the same procedure used in [116], we obtain the ionization rate of a diatomic

molecule in a parallel static electric field as

wstat(F ) =
B2(m)

2|m||m|!
1

κ2Zc/κ−1

×
(

2κ3

F

)2Zc/κ−|m|−1

e−2κ3/3F , (4.30)
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where κ is related to the ionization energy Ip by κ =
√

2Ip, m is the projection of the

electronic orbital angular momentum along the internuclear axis, F is the field strength. In

Eq. 4.30, the parameters Clm are determined from the valence electron wavefunction of the

molecule in the asymptotic region and has been tabulated by Tong et al. [10]. To obtain

the ionization rate by a laser, we need to average over the field strength of one-half cycle,

w(F ) =
1

π

∫ π

0
wstat(F cos τ)dτ

=

(

3F

πκ3

)1/2

wstat(F ), (4.31)

where F now stands for the peak field strength within the half cycle. If the molecule is

aligned at an angle θ with respect to the laser polarization direction, the ionization rate is

given by

w(F, θ) =
∑

m′

w(F ), (4.32)

with

B(m′) =
∑

l

ClmD
l
m′,m(0, θ, 0)

×(−1)m
′

√

(2l + 1)(l + |m′|)!
2(l − |m′|)! , (4.33)

where the D-function reflects the rotation of the electronic wavefunction from the direction

of the molecular axis to the laser polarization direction. In the MO-ADK model, Eq. 4.29

reduces to the traditional ADK model for atoms if ℓ is taken to be the orbital angular mo-

mentum quantum number of the valence electron. For diatomic molecules, the summation

over ℓ is a consequence of expanding the two-center electronic wavefunction of a valence

orbital in terms of single-center atomic orbitals. We note that the valence electron for N2 is

a σg orbital such that m = 0, while for O2 it is a πg orbital such that m = 1. The molecular

parameters needed for performing these calculations for N2 and O2 molecules have been

listed in [104].
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Figure 4.4. The ionization rates as a function of the angle θ between the laser field direction
and the molecular axis for (a) N2 and (b) O2 molecules. The laser peak intensity is in units
of 1013 W/cm2. The rates are normalized at 0 degree.

In Fig. 4.4, we show the alignment-dependent ionization rates for N2 and O2 molecules

at peak field intensities from 2×1013 W/cm2 to 3.2×1014 W/cm2, normalized with respect

to θ=0. For N2 the ionization rate decreases monotonically with increasing θ. This is not

the case for O2 molecules where the ionization rate peaks at θ near 40o. With higher field

intensities the dependence of ionization rate versus θ becomes weaker.

These calculated alignment dependent ionization rates from the MO-ADK model can

be qualitatively understood in terms of the geometry of the charge distribution of valence

electrons for each molecule. For N2, the valence electron is a σg orbital, and its electron

cloud lies preferentially along the internuclear axis. Thus when the molecule is aligned
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along the field direction, the electronic density along the field direction is maximum and

the electron is most easily ionized. When the molecule is aligned at an angle θ with respect

to the field, the effective electronic density in the field direction is reduced and the ionization

rate becomes smaller. The situation for O2 is different. Its valence electron is a πg orbital.

When the molecular axis coincides with the laser polarization direction, there is little valence

electron density. On the other hand, when the field direction is at 45o with respect to the

molecular axis, the electron cloud would have maximum density along the field direction

and thus the ionization rate is maximum. The results in Fig. 4.4 are consistent with this

simple geometric interpretation.

4.6 Alignment-dependent ionization

In the last decade, many experiments have been carried out with the aim of inves-

tigating the alignment dependence of the ionization rates of molecules using the Coulomb

explosion technique [117, 118, 119, 120, 121, 122]. By detecting two dissociated ions in

coincidence, the alignment of the molecule before ionization may be deducted. However,

the Coulomb explosion technique works better if the molecular ions are doubly or multiply

ionized by the laser. At present even single ionization of molecules is not well understood,

not to mention multiple ionization[123]. Dissociative ionization may occur at different in-

ternuclear separations, and the ion products could also be deflected by the laser fields before

they reach the detectors. These unknown factors make it difficult to extract quantitative

alignment dependence of ionization rates from these experiments directly.

Here we consider a double-pulse experiment where the alignment dependent ioniza-

tion rates for molecules predicted by the MO-ADK model [104] can be directly and un-

equivocally tested. A short pump pulse is used to generate a rotational wavepacket which

produces aligned molecules during the periods of rotational wavepacket revival. The ion-

ization probabilities by a subsequent probe laser vs the time-delay are calculated for O2
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Figure 4.5. (a) Ionization signal as a function of the delayed time between the pump and
probe laser pulses, and (b) time-dependent alignment parameters after the pump pulse for
N2 at 25 K and 300 K. The pump and probe laser intensities are 2 × 1013W/cm2 and
8 × 1013W/cm2, respectively.

and N2 molecules at different temperatures. Distinct time dependence is presented and the

results are interpreted in terms of the geometry of the charge distributions of the valence

electrons of the two molecules.

The laser referred will always be the Ti:Sapphire laser set at 800 nm, assuming a

Gaussian pulse shape. We take the pulse pulse intensity as 2 × 1013 w/cm2 with optimal

pulse duration 250 fs as discussed previously and probe pulse with intensity of 4×1013W/cm2

for O2 and 8 × 1013W/cm2 for N2.

In Fig. 4.5(b) the time-dependence of alignment of N2 is shown at two temperatures.

At 300 K, the molecules are not aligned except at several intervals during which the align-
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Figure 4.6. (a) Ionization signal as a function of the delayed time between the pump and
probe laser pulses, and (b) time-dependent alignment parameters after the pump pulse for
O2 at 25 K and 300 K. The pump and probe laser intensities are 2 × 1013W/cm2 and
8 × 1013W/cm2, respectively.

ment changes rapidly. These rapid changes occur when the molecules experience rotational

wavepacket revival, see the structures near 4 ps and 8 ps in Fig. 4.5(b). The rotational

revival repeats at intervals separated by Tr, where Tr is determined by the rotational con-

stant of the molecule. For N2, the revival time is 8 ps. At each rotational revival, for a

period of a few hundred femtoseconds, the alignment of molecules changes rapidly. The

anisotropic distributions of molecules in this short time interval offer the opportunity to

investigate the alignment dependence of ionization rates without the need of determining

the alignment of each molecule. The degree of alignment for a given laser pulse increases if

the molecules are at lower temperature.
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By employing another “probe” laser at different time delays with respect to the weak

“pump” laser, the ionization rates or signals from such aligned molecules can be measured.

Consider a probe laser which has the same polarization direction as the pump laser. In

Fig. 4.5(a) we show the predicted ionization signals at two temperatures when a second 25

fs “probe” pulse of peak intensity 8 × 1013 W/cm2 is used to ionize the aligned molecules.

Note that the ionization signals vary rapidly with the time delay. The ionization signal

peaks when the alignment peaks. In fact, the time-dependence of the ionization signal

almost mimics the time-dependence of the alignment of the molecules. This is no surprise

since the alignment-dependent ionization rate for N2, as shown in Fig. 4.4(a), is almost

approximately given by cos2 θ. Since the degree of alignment is defined to be the average

of cos2 θ, the two averages are essentially identical mathematical expressions. In terms of

relative magnitudes, at 25 K, the maximum to the minimum peak signals is more than a

factor of 3. At 300 K, the ratio still is about 1.42.

The ionization signal vs time delay for O2 molecules is markedly different, especially

at lower temperature, as shown in Fig. 4.6. Clearly the ionization signal does not peak

at the time when the alignment is at the maximum. The reason is already given earlier.

When O2 molecules are aligned in the direction of the laser field, the density of the valence

electron in the field direction is small. At each time delay, the molecules are distributed

over a broad range of angles even if the molecules are aligned. At lower temperature the

distribution becomes sharper, i.e., the molecules are distributed more sharply along the field

direction. Thus, for example, at 25 K, the ionization signal is at a local minimum when

the alignment is maximum. At higher temperature, the ionization signal does not change

with time delay as strongly as in N2. The ionization signal is the average of two functions.

One is the distribution of the molecular alignment which peaks at θ=0o. The other is the

alignment dependent ionization rate which peaks at θ near 45o. As a result, the ionization
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signal does not depend on the alignment as strongly for O2. At 25 K, the ratio of maximum

to minimum ionization rates is 1.6, as compared to 3.0 for N2.

So far we have chosen the polarization of the probe pulse to be parallel to the polar-

ization of the “pump” pulse. An alternative method to test the prediction of the MO-ADK

theory is to study the ionization signal vs the relative polarization direction. when the

probe pulse is parallel to the pump pulse, the ionization signal is given by

Pion =

∫ 2π

0

∫ π

0
|ψ(θ, φ)|2f(θ) sin θdθdφ. (4.34)

Since ψ(θ, φ) has azimuthal symmetry, it can be reduced to

Pion = 2π

∫ π

0
|ψ(θ)|2f(θ) sin θdθ, (4.35)

where f(θ) is the ionization rate at the angle θ between polarization of laser pulse and

molecular axis. When the the probe pulse is placed at θ0 with respect to the pump pulse,

the azimuthal symmetry is broken and the ionization signal in this situation is given by

Pion(θ0) =

∫ 2π

0

∫ π

0
|ψ(θ, φ)|2f(γ) sin θdθdφ, (4.36)

where γ is the angle between the molecular axis and the polarization of laser pulse, and

cos γ = sin θ cosφ sin(θ0) + cos(θ) cos(θ0). (4.37)

If we define

F (θ) =

∫ 2π

0
f(γ)dφ, (4.38)

the ionization signal can be written as

Pion(θ0) =

∫ π

0
|ψ(θ, φ)|2F (θ) sin θdθ. (4.39)

In Fig. 4.7, we show the calculated dependence of the ionization signals at three

different relative polarizations between the two laser pulses for O2 at 25 K. At this low
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Figure 4.7. (a) Ionization signal as a function of the delayed time between the pump and
probe laser pulses with different probe laser polarizations, and (b) time-dependent alignment
parameter after the pump pulse for O2 at 25 K. The pump and probe laser intensities are
2 × 1013W/cm2 and 8 × 1013W/cm2, respectively.

temperature and at the time of maximum alignment, the ionization signal is near maximum

when the two polarizations are 45o with respect to each other. At the maximum alignment,

the molecules are preferentially aligned in the direction of polarization of the “pump” laser.

When the probe laser is set at 45o with respect to the pump laser, it is the direction where

the charge density of the O2 valence electron is maximum, and thus the ionization rate will

be maximum. In this way, the directional property of the valence electron can be probed

directly in a two-pulse experiment and such a method probably can be extended to study

more complex molecules.
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In summary we propose a double short-pulse laser experiment to measure the align-

ment dependent ionization probability of N2 and O2 molecules. A short weak pump pulse

is used to align the molecules during the period where the molecules undergo rotational

wavepacket revival. During this revival period a second “probe” pulse is used to ionize

the molecules at different time delays. It is predicted that the ionization signal depends

sensitively on the time delay. For N2 maximum ionization was predicted to occur when the

molecules have maximum alignment. For O2, because its valence electron is a π orbital, the

ionization signal is smaller when the alignment is at the maximum. The behavior predicted

for O2 should be applicable to other molecules with π valence electrons. Similarly, the

predictions for N2 should be characteristic of molecules with σ valence electrons. As noted

previously [104] molecules whose valence electron is a π orbital would exhibit “ionization

suppression”. From the existing ionization measurements on diatomic molecules, the only

molecule which has π valence electron but its ionization does not exhibit ionization sup-

pression is the F2 molecule. Following the distinctly predicted difference in O2 and N2, it

may be desirable to perform double-pulse experiment on F2 to check if the ionization rate

of F2 vs time delay is closer to that for O2 or to N2. The proposed double-pulse experiment

would shed new light to test our understanding of the interaction of lasers with molecules.
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Chapter 5

Summary and conclusions

In this dissertation, I have explored the dynamics of atoms and molecules in ultrashort

laser fields. With pulse durations approaching attosecond time scale, attosecond metrology

in capturing electronic processes occurring in matter-light interactions is becoming a reality.

We have performed calculations of angle-resolved photoelectron spectra of Ar atoms in the

combined field of an attosecond XUV pulse and a circularly polarized laser pulse. Electrons

generated by the attosecond XUV pulse are deflected by the laser field. We examined first

theoretically how the electron spectra, including the angular distributions, depend on the

pulse duration and the chirp parameter of the XUV light pulse. We also showed how to

retrieve or measure the pulse duration and the chirp parameter of such an attosecond XUV

pulse if the angle-resolved electron spectra are available from experiments. The method

requires that the few-cycle lasers be well characterized already, including the carrier envelope

phase.

Applying the strong field approximation, we have developed a quantum theory for

describing the photoelectron spectra of an autoionizing state created by an attosecond XUV

pulse in the streaked few-cycle IR laser field. From the time-resolved spectra, we demon-

strated how to monitor the dynamics of the decay process in a laser field and illustrated the

utility of the theory by extracting the lifetime of one isolated and two nearby resonances.

We proposed a double short-pulse laser experiment to measure the alignment depen-

dent ionization probability of N2 and O2 molecules. With a short pump pulse, the molecules

undergo dynamic alignment at revival times. During this revival period, a second “probe”

pulse is used to ionize the molecules at different time delays. We showed that the ionization

signal is sensitive to the time delay. For N2, maximum ionization was predicted to occur

when the molecules have maximum alignment. For O2, because its valence electron is a π
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orbital, the ionization signal is smaller when the alignment is at its maximum. The behavior

predicted for O2 should be applicable to other molecules with π valence electrons. Simi-

larly, the predictions for N2 should be characteristic of molecules with σ valence electrons.

Experiments of similar types have now been carried out.

With the rapid progress of the laser technology, the field of ultra-short laser pulses

and/or ultra-intense laser fields is expected to continue to grow and find many applications

in the coming years. It is an exciting frontier in sciences where new developments and new

challenges are emerging every single day.
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APPENDIX A

Conversion of units and definiton of parameters
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• Electric field: 1 a.u.=5.142 × 109 V/cm.

• Laser intensity: 1 a.u.=3.51 × 1016 W/cm2.

• Time: 1 a.u.=2.4189 × 10−17 s, 1 fs=41.341 a.u.

• Frequency and Wavelength: Frequency of 1 a.u. corresponds to wavelength of 45.565

nm. For a typical Ti:Sapphire laser with a wavelength of 800 nm, the corresponding fre-

quency is 0.057 a.u. (1.55 eV) and the cycle period is 110 a.u. =2.7 fs.

• Ponderomotive energy: defined as the cycle averaged kinetic energy of a free electron

in a monochromatic laser field, i.e.,

UP =
e2E2

0

4ω2
,

where E0 and ω are the field strength and frequency respectively. Note it is proportional

to the field intensity and inversely proportional to the square of the laser frequency. For

typical Ti:Sapphire lasers with wavelength 800 nm, the ponderomotive energy is 6 eV for

the laser intensity of 1 × 1014 W/cm2.

• Keldysh parameter [5]: defined as

γ =

√

Ip
2UP

,

where Ip is the ionization potential and Up is the ponderomotive energy. Ionization takes

place through multiphoton ionization (MPI) when γ > 1, but tunneling ionization dominates

if γ < 1.
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APPENDIX B

Gauge transformation
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In the length gauge, the time-dependent Shrödinger equation for an atom with a

single active electron in the laser field is given by

i
∂Ψ(~r, t)

∂t
= [−1

2
∇2 + V (~r) − q ~E · ~r(t)]Ψ(~r, t), (B.1)

where q is the electronic charge. In the velocity gauge, it takes the form

i
∂Ψ(~r, t)

∂t
= [−1

2
∇2 + V (~r) − q

c
~A(t) · p̂]Ψ(~r, t), (B.2)

where ~A is the vector potential of the laser field and is given below. The wavefunction of a

free electron moving in the laser field is described by the Volkov state which can be obtained

analytically by the transformation from length gauge to acceleration gauge

ΨL = exp (−iq
c
~A · ~r) exp (i~p · ~α− iµ)ΨA, (B.3)

where

~A(t) = ~A(0) − c

∫ t

0

~Edt′,

~α(t) = ~α(0) +
q

c

∫ t

0

~Adt′,

µ(t) = µ(0) +
q2

2c2

∫ t

0
A2dt′. (B.4)

This transformation can be easily understood classically. In the classical description, the

motion of an electron is characterized by its position and velocity, (~r,~v). When the laser

field is applied, these change to (~r − ~α,~v + q
c
~A). By shifting the center of (~r,~v) from (0,0)

to (~α, q
c
~A), the effect of the laser field is removed, and the electrons in this frame can be

treated as freely propagating. This reference frame is called the Kramers-Henneberger (KH)

frame, and the wavefunction is said to be in the acceleration gauge. In the KH frame, the

TDSE becomes

i
∂ΨA(~r, t)

∂t
=

[

−1

2
∇2 + V (~r − ~α)

]

ΨA(~r, t). (B.5)

In the absence of the V (~r) potential, the solution of the TDSE is a plane wave. By trans-

forming back to the length gauge, we obtain the usual Volkov state.
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APPENDIX C

Program descriptions
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C.1 Code package PSSO

Purpose: Calculating TDSE of an atom in external fields. This package is originally

developed by Dr. XiaoMin Tong.

Methods: The pseudospectral method is used to discretize the Hamiltonian and the

splitting-operator method is used for the propagation of the wavefunction.

Source files:

1. t03h.f: main program;

2. t03.h: head file specifying the parameters and dimension of arrays;

3. shap.f: input of the laser pulse shape and transformation from angular space to angular

momentum space;

4. d01bcf.f: determination of Gaussian quadrature rules;

5. makefile: compiling file executed by make command;

6. t03.in: input data for t03h.f;

Compiling: By running “make” command, makefile is called and executable file e.x

is generated if no compiling errors are reported. Common libraries mkl lapack, mkl p4 ,

pthread and Vaxlib are called which are all available on the intel machines. For further

information, please check with Dr. Tong or go to B. D. Esry’s homepage. An example of

the makefile is given in the following:

LIB = -lmkl lapack -lmkl p4 -lpthread -Vaxlib

e.x : t03h.o shap.o d01bcf.o t03.h

ifc -xW -tpp7 -132 t03h.o d01bcf.o shap.o -o e.x $(LIB)

t03h.o : t03h.f t03.h

ifc -xW -tpp7 -132 -c t03h.f

shap.o : shap.f t03.h

ifc -xW -tpp7 -132 -c shap.f
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d01bcf.o :d01bcf.f

ifc -c d01bcf.f

Explanations of the input data:

rmax: maximum radial distance in a.u.

alpha: dividing point of the inner and the outer region

rc: smaller than rmax. An absorber is used beyond rc

nl: number of partial waves used

nr: number of grid points in radial dimension

tdl: laser pulse duration in unit of fs

El0: laser intensity in unit of 1014 w/cm2

omegal: laser frequency in unit of eV.

The rest data will only be used when another XUV pulse is accompanied with the

laser field:

tdx: XUV pulse duration in unit of fs

ex0: XUV pulse intensity in unit of 1014 w/cm2

omegax: XUV photon energy in unit of eV

dealy: time delay ( in fs) between two pulses.

Sample of the input file: t03.in

400.d0 200.d0 390.d0 40 600 rmax, alpha, rc, nl, nr

10.0 4.0d-1 1.56 tdl (fs),El0(1014),omegal(eV)

0.5 1.d-2 20 tdx (fs),ex0,omegax(ev)

0.d0 delay time in fs.

Output: The partial wavefunctions after the propagation are stored in the files fort.11

to fort.30 (10+nl). If the dipole moment is desired, the subroutine “resu” in t03h.f should

be called, and the dipole moment will be stored in file t03.out. In order to calculate ATI
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photoelectron spectra, addition file Couladqf.f can be used. The pre-calculated partial

wavefunctions will served as the input data. The atomic potential in Couladqf.f should be

consistent with that used in t03h.f.

C.2 Package ALIGN

Purpose: Calculating the alignment of molecules by a laser field.

Method: The splitting-operator method is used to solve the the timed-dependent

Schrödinger equation of a molecule rotating in a laser field. Magnetic quantum number

is conserved, thus the wavefuction can be expanded by spherical harmonic functions with

given m number.

Source files: QMensemble.f, shap.f, t03.h, align.in, d01bcf.f, makefile and thermalaver.f.

Explanation of the input data:

nl: number of partial waves;

theinertia: the inertia of the molecule;

pola1, pola2: principal component of the polarizability along

and perpendicular to the molecular axis

frm: laser field strength in a.u.

eof: laser frequency in a.u.;

dt: time step of propagation in a.u.

ncycle: laser pulse duration in unit of the laser optical period.

Sample of the input file, align.in:

40 nl

0.023905 0.0577 50.1 90 frm, eof, dt,ncycle

54000.d0 theinertia

17.618 8.808 pola1,pola2
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Output: The time-dependent alignment parameter for the initial |JM > with M ≥ 0

rotational state is stored in fort.(1000+indexJM) where indexJM is the sorting index of

|JM > state. If the density of the rotational wavepacket at time mt is wanted, the output

files fort.(3000+mt) should be disclosed. For a given temperature, the thermal averaging

is carried out using program thermalaver.f. The averaged alignment parameter is stored in

align.dat.

C.3 Package LAAS

Purpose: Calculating laser-assisted autoionization spectra in a XUV pulse.

Method I: Under the strong field approximation, semi-analytical method to calculate

laser-assisted autoionization spectra is implemented in FanoMay1.f with input file fano.in.

The integration of the field is carried out first. For the second fold of integration, the

interpolation method is used to find the time-varying vector potential and other quantities

related to the field.

Sample of the input file, fano.in:

5.0 1.d-2 1.65 tdl(fs), El0(1014), omegal(eV)

0.5 1.d-2 39.0 tdx(fs), ex0, omegax(ev)

0.d0 delay time in fs

0.d0 ellipticity

0.d0 phase in mutiples of π

1 2 controlling parameters: no. of resonances and iflag

16.121915 ionization potential in ev

q, position (eV) width (eV)

-4.19199804 22.922855 0.055264
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Method II. Numerical solving the time-dependent Schrödinger equation for a two-

channel system is performed by generalizing the package PSSO. The source files include:

t03h2c.f, shap.f, d01bcf.f, makefile and t03.in. The input data is the same as that used in

PSSO. The two-channel continuum wavefunctions are calculated in adqf.f with input file

adqf.in.

Explanation of variables and subroutines:

cphir(i,j), dphir(i,j): wavefunctions in the lower and upper channel respectively,

i, j represent the ith grid point and the jth partial wave

cphip, dphip: wavefunctions of the lower and upper channel

in the energy space respectively

sym kin(): initialize the symmetrized kinetic operator

PRETRAN(): prepare the transform matrix between θ and L space

tran pre(), : prepare the transform matrix between coordinate space

and energy space for lower channel

tran pre II(): prepare the transform matrix between coordinate space

and energy space for upper channel

WF pre(ier): prepare the initial wavefunction

proinv1(): transformation between coordinate space and energy space

proinV2(): transformation between θ and L space

time pro(): coupling between two channels.

C.4 Package LAPI

Purpose: Calculating the laser-assisted photoionization spectra.

Method: The laser-assisted photoelectron spectra is calculated using LAPI numXecton.f.

The input file is Omega.in and Xection.dat. The photoionization cross section and the
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asymmetry parameter is precalculated and stored in Xection.dat. In order to obtain the

information of the XUV pulse from the spectra, the genetic algorithm is implemented in

the code InvLAPI3.f and ga170.f.

Compiling: run “make” command to call the makefile. Content of the makefile:

InvLAPI.x : InvLAPI3.f LAPI.h LAPI.x ga170.o

ifc InvLAPI3.f ga170.o -o InvLAPI.x

LAPI.x : LAPI num cir.f LAPI.h

ifc LAPI num cir.f -o LAPI.x

ga170.o: ga170.f params.f LAPI.h

ifc -c ga170.f

Sample of the input file, Omga.in:

5.d0 1.d-1 1.653 tdl(fs), El0(1014), omegal(eV)

0.05 1.d-2 35 tdx(fs),ex0,omegax(ev)

0.d0 delay time in fs

1.d0 ellipticity

15.759 ionization potential (eV).
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