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Abstract
Isolated attosecond pulse (IAP) is a tool of probing electronic dynamics occurring in

atoms, molecules, clusters and solids, since the time scale of electronic motion is on the

order of attoseconds. The generation, characterization and applications of IAPs has become

one of the fast frontiers of laser experiments. This dissertation focuses on several aspects

of attosecond physics. First, we study the driving wavelength scaling of the yield of high-

order harmonic generation (HHG) by applying the quantum orbit theory. The unfavorable

scaling law especially for the short quantum orbit is of great importance to attoseond pulse

generation toward hundreds of eVs or keV photon energy region by mid-infrared (mid-IR)

lasers. Second, we investigate the accuracy of the current frequency-resolved optical gating

for complete reconstruction of attosecond bursts (FROG-CRAB) and phase retrieval by

omega oscillation filtering (PROOF) methods for IAP characterization by simulating the

experimental data by theoretical calculation. This calibration is critical but has not been

carefully carried out before. We also present an improved method, namely the swPROOF

which is more universal and robust than the original PROOF method. Third, we investigate

the controversial topic of photoionization time delay. We find the limitation of the FROG-

CRAB method which has been used to extract the photoionization time delay between

the 2s and 2p channels in neon. The time delay retrieval is sensitive to the attochirp of

the XUV pulse, which may lead to discrepancies between experiment and theory. A new

fitting method is proposed in order to overcome the limitations of FROG-CRAB. Finally,

IAPs are used to probe the dynamic of electron correlation in helium atom by means of

attosecond transient absorption spectroscopy. The agreement between the measurement

and our analytical model verifies the observation of time-dependent build up of the 2s2p

Fano resonance.
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Chapter 1

Introduction

Since the quantum picture of the world was established in the early 20th century, to probe

the ultrafast motion of atoms or electrons in gas phase molecules or solids has been an

intriguing topic for physicists, chemists and even biologists. As we know, atomic motions in

molecules such as molecular transformation and chemical reaction are mostly on the fem-

tosecond (10−15 second) time scale. In the 1980s, laser technology enabled the compression

of optical pulses to sub-picosecond, then dynamical imaging of chemical reaction became

possible. In 1985, photodissociation of the ICN molecule in gas phase was first studied

using optical pump-probe spectroscopy by A. H. Zewails group[1]. Because of his extraordi-

nary contribution of transient dynamic imaging, Zewail was awarded the 1999 Nobel Prize

in Chemistry. The term “pump-probe” is prevailing in ultrafast experiments. Typically a

“pump” pulse is used to initiate certain dynamics, for example, dissociation, and a “probe”

pulse which arrives at different time delays with respect to the pump pulse is used to monitor

such dynamics.

Chemists are interested in monitoring and controlling chemical reactions, while physi-

cists have a long-lasting dream of making “movies” for electrons in atoms, molecules and

condensed matter. A natural time scale of electron dynamics is on the order of attoseconds

(1 as = 10−18 s). For example, we can estimate the period of the electron motion in the 1s

1



orbital of atomic hydrogen to be 150 as. To make such electron movies requires a “camera”

with a “shutter speed” on the order of attoseconds, that is, an attosecond light pulse. To

support such a short duration, in the frequency domain the pulse should have a broad band-

width which is usually in the extreme ultraviolet (XUV) or soft X-ray regime. Nowadays

such broadband XUV emissions are produced by high-order harmonic generation (HHG)[2],

which is a phenomenon when high-power (1014 W/cm2) short-pulse lasers interact with no-

ble gases. HHG is a dramatically nonlinear process that converts the laser frequency which

is always in the infrared (IR) region to multiples of this fundamental frequency up to the

XUV region. By manipulating the HHG process, either attosecond pulse train (APT)[3]

or isolated attosecond pulse (IAP)[4] can be generated. Taking advantage of such novel

attosecond techniques, in the past decade experimentalists have performed many pioneering

investigations on atomic, molecular and solid-state physics, for example, on electron correla-

tion effects[5], time delays in photoionization[6] and charge transfer in complex molecules[7].

These experimental results have triggered an intense theoretical activity, resulting in hun-

dreds of experimental and theoretical publications. Attosecond science and technology have

revitalized the traditional atomic and molecular physics. The generation and characteriza-

tion of attosecond pulses as well as their applications in observing and controlling physical

processes have become one of the fastest growing frontiers in laser research.

1.1 Generation of attosecond pulses

1.1.1 High-order harmonic generation

Attosecond pulses are inevitably produced in the process of HHG. HHG was first discovered

in 1987 by using a KrF laser[8] and in 1988 by a Nd:YAG laser[9]. In the 1990s, high-power

femtosecond Ti:Sapphire laser system[10] was developed and became the main technology

for HHG experiments. A typical Ti:Sapphire laser has a central wavelength of about 800

nm (1.55 eV in photon energy). It can routinely produce nanojoule pulses with a few

2



optical cycles in duration. Using novel pulse compression techniques, the pulse duration

can even reach 5 fs or shorter[11]. The pulses can be amplified to a few mJ or higher by

chirped pulse amplification (CPA), and the carrier-envelope phase (CEP) of the femtosecond

laser can be stabilized by using the f − to − 2f technique developed for optical frequency

metrology[12]. The typical laser intensity on the gas target is on the order of 1014 W/cm2.

The corresponding electric field of the light is comparable with the internal Coulomb field

in an atom. Therefore strong field theory instead of the pertubative theory was needed to

explain the HHG phenomenon.

In 1965 Keldysh[13] suggested an alternative tunneling mechanism for strong field ioniza-

tion under certain conditions. At modest laser intensities (< 1014 W/cm2), if the ionization

potential is low compared with the frequency of the light and large compared with the

electric field of the laser, the normal multiphoton excitation scheme for ionization via inter-

mediate states applies. On the other hand, if the incident field is strong enough, the atomic

potential can be significantly distorted to such an extent that a potential barrier is formed.

Furthermore, if the light frequency is low enough such that the electron can respond to this

changing potential, within a quasi-stationary approximation, the electron can tunnel out

through a static potential barrier. Keldysh introduced a parameter known as the “Keldysh

parameter”

γ =

√
Ip

2Up
(1.1)

which determine whether the atom is ionized in the tunneling (γ � 1) or the multiphoton

regime (γ � 1). In Eq. (1.1), Ip is the ionization energy of the target, and Up is called the

ponderomotive energy defined by (in atomic units)

Up =
E2

0

4ω2
∝ Iλ2. (1.2)

Here E0 and ω are the electric field strength and frequency, while I and λ are the peak

intensity and wavelength of the laser, respectively. The tunneling ionization model is an

3



essential element in the theory of HHG.

A typical HHG spectrum starts with a fast decrease of intensity versus photon energy

(or harmonic order), followed by a broad plateau that extends to the XUV region and

then an abrupt cutoff. Theoretical understanding of HHG was initiated in 1992-1993 by

Krause [14] and Corkum [15]. According to their works, a semiclassical theory named

by “simple-man’s model” or “three-step model” was built to explain the plateau behavior

of the HHG spectrum. According to this model, in the strong laser field, an outermost

electron is first tunnel ionized from the atom when the electric field of the laser is close

to its peak during an optical cycle. Second, this electron is driven away from the nucleus.

When the oscillating laser field changes its sign (about a quarter of an optical cycle later),

the electron first decelerates, and then starts to re-accelerate back towards the parent ion.

Therefore, the electron can gain a significant amount of kinetic energy, much larger than

the fundamental photon energy. Third, the returning electron recombines with its parent

ion, this kinetic energy plus the ionization potential can be released in the form of high

energy photon. The semiclassical three-step model predicts that the cutoff position in the

HHG spectrum followed a universal law of Ip + 3.17Up. This model was confirmed by a

quantum-mechanical treatment which includes quantum effects, such as the depletion of the

ground state, wave packet spreading and interference, based on a strong-field approximation

(SFA) by Lewenstein et al [16].

The geometries widely used in HHG is that a gas jet or a gas cell is positioned in a focused

laser beam. The cutoff photon energy and the yield of HHG is determined by not only the

single atom response but also the macroscopic phase matching, because both the laser and

the generated harmonic fields propagate in the gaseous medium, and they are influenced by

nonlinear effects such as dispersion, absorption, generation of plasma, and ionization[17].

Harmonic generation will be efficient only if the good phase-matching is achieved, requiring

that the generated XUV field to be in phase with the laser-induced polarization over the

medium’s length.
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The harmonic emission can be understood intuitively as ultrashort bursts emitted at

each recollision of the electron with the parent ion, which takes place during every half

optical cycle. Based on the semiclassical model, the recollision electrons can be separated

by different quantum orbits. A quantum orbit is a semiclassical mapping of a moment of

birth into a moment and energy of recollision. Especially, the electrons born in the same

quarter optical cycle can be divided into two sets that generate the same XUV frequency:

the electrons born closely after the field crest and returning between three-quarters to one

optical cycle belong to the “long orbit”; the electrons born later and returning earlier belongs

to the “short orbit”. When considering macroscopic effects, either phase matching in the

medium or spatial filtering in the far field tends to select the contribution of only one of

these orbits, usually the short orbit contribution. As a result, harmonic radiation consists of

a train of sharp short-wavelength pulses with sub-femtosecond duration (that is an APT),

with only one pulse per half cycle. By symmetry, an APT only contains odd harmonics in the

frequency domain. Experimentally, an APT with duration of 250 as was first demonstrated

by Paul et al.[3] through HHG in Ar. The APT generated from HHG usually contains

attochirp. The attochirp is the dispersion of XUV photon energy with emission time. If the

short orbit is selected by phase matching, the harmonic emission time increases as photon

energy increases, that is, the harmonics have positive attochirp, which leads to temporal

broadening. To improve the harmonic synchronization, one can propagate the harmonics in a

negative chirp medium to compensate the positive chirp introduced in the HHG process[18].

1.1.2 Generating isolated attosecond pulses using gating methods

In APTs, although each burst is of sub-femtosecond duration, the whole pulse train is

still a few to tens of femtoseconds. For applications in dynamic systems that require sub-

femtosecond temporal resolution one would need IAPs. To generate IAPs the fundamental

laser must be CEP stable. The key issue is to isolate a single emission event in the HHG

process. A few gating schemes have been applied to produce IAPs, and in the following we
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briefly mention some of them.

Amplitude gating

In the amplitude gating approach the harmonic emission is spectrally filtered. For a short

enough driving pulse, only the attosecond pulse generated by the most intense half cycle of

the driving pulse, which corresponds to the cutoff portion of the HHG spectrum, can pass

the high photon energy bandpass filter. For 800 nm laser, pulses as short as about 3.6 fs

have been used for the generation of IAP. Using this method, with Ne as the target, IAP

with central energy of 80 eV and pulse duration of 80 as has been reported[4].

Ionization gating

This method relies on generating harmonics using intense lasers beyond the saturation

intensity. The neutral medium is completely depleted within the leading edge of the driving

pulse. The leading edge of the driving pulse severely ionized the gas medium and creates

a dense plasma. At the trailing half, plasma dispersion and the absence of neutral atoms

turns off the harmonic emission. The gating obtained by confining the harmonic emission

on the leading edge may not produce a very narrow pulse, thus additional spectral filtering

is needed[19].

Polarization gating

The amplitude gating and ionization gating methods preclude the generation of IAPs with

ultrabroad bandwidths because the usable cutoff spectrum typically covers a relatively small

portion of the total spectrum. This limitation can in principle be overcome by using a half-

cycle IR driving pulse. However, to synthesize such a pulse is difficult. On the other hand, it

is possible to generate a long pulse where the polarization of the driving pulse is manipulated

such that the rising edge and the trailing edge of the pulse are elliptically polarized, while

the central cycle is linearly polarized, as originally proposed by Corkum et al.[20]. Harmonic
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generation is sensitive to the ellipticity, thus the rising and the trailing edges of the pulse do

not generate harmonics, and high harmonics are generated only from the central portion of

the pulse which is linearly polarized. Using this polarization gating (PG) method, IAP as

short as 130 as in the spectral range of 25-50 eV with an energy of 70 pJ was first generated

and characterized in 2006[21].

A laser pulse with time-dependent ellipticity can be formed by combining a left-hand

circularly polarized pulse and a right-hand circularly polarized pulse with a time delay Td

[22]. For such a pulse, the time interval wherein the ellipticity ε(t) is less than a certain

threshold εth can be given approximately by

δtPG =
εth
ln 2

τ 2

Td
, (1.3)

where τ is the duration of both circularly polarized pulses. Since harmonic yield drops by

about a factor of two when the ellipticity changes from 0 to 0.13, and if we choose Td about

equal to τ , then the gate window where ε is less than 0.2 will be given by δtPG = 0.3τ . This

gate window should be less than the time between two successive emissions. For a 800 nm

driving pulse, this would require a pulse duration of about 5 fs. In other words, one would

need to start with 5-fs circularly polarized light. Besides, taking into account the depletion

of the ground state population by the circularly polarized leading edge, the PG method also

requires short driving laser pulses.

To relax the need of using short pulses, one way is to change the period of HHG from

half optical cycle to full optical cycle by adding a second harmonic with proper energy and

phase to the driving laser. This method is called DOG (double-optical gating). For the same

pulse energy this method will enhance the generation efficiency because of less ionization

at the leading edge of the driving pulse. One can also use higher intensity driving laser

to reach higher intensity IAP using DOG than the polarization gating method. In 2009

Mashiko et al.[23] reported the measurement of XUV bursts with a bandwidth of 200 eV

that was generated by a main 8 fs-800 nm driving pulse and a second harmonic using the
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DOG technique. To use even longer driving pulses, one can replace each of the circularly

polarized pulse by an elliptically polarized light with ε about 0.5. This method is named by

Generalized DOG (GDOG) and would allow IAPs with 148 as duration generated with 800

nm-28 fs driving pulses[24]. At present, the DOG method appears to be the most commonly

used for IAP generation. Using 7 fs-750 nm-1 kHz Ti-Sapphire laser focused to 1 × 1015

W/cm2 on Ne at high gas pressure, Zhao et al. reported 67-as pulses with energy centered

at 80 eV[25].

Attosecond lighthouse

This method was first introduced by Vincenti and Quéré[26]. It is carried out by insert-

ing a pair of glass prisms in the beam path before focusing to generate a time-dependent

wavefront, a wavefront that changes directions continuously throughout the beam. With

such rotating wavefront, each attosecond pulse generated in a train is emitted in a different

direction. If the wavefront rotation within one half cycle of the driving laser field is larger

than the divergence of the individual attosecond pulses, then each attosecond burst can be

separated spatially. This method, known as “attosecond lighthouse”, will prove a powerful

resource for attosecond science. The method still requires relatively short pulses and has

been demonstrated with a 5-fs CEP stabilized 800-nm laser[27].

1.1.3 Generation of attosecond pulses by mid-infrared driving

lasers

For atomic physics, condensed matter, chemical and biological applications, it is important

to extend the harmonic spectrum to the “water window”, i.e., the photon energy range

from 280 to 530 eV, between the K-absorption edge of carbon and oxygen. Such soft X-ray

light sources will allow studying electron dynamics in materials containing carbon, nitrogen,

oxygen and several other key elements using core-level transitions. The conventional 800-nm

Ti:Sapphire laser is very inefficient to generate such a harmonic spectrum. According to
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the semiclassical model, the cutoff energy of HHG is Ip + 3.17Up where Up ∝ Iλ2, therefore

mid-IR driving sources seem promising for generating broadband attosecond pulses covering

the water window. So far many mid-IR lasers for HHG and strong field experiments have

been developed, exploiting the optical parametric amplification (OPA)[28–31] or optical

parametric chirped pulse amplification (OPCPA)[32–35]. The typical central wavelength

of the driving pulse lies in 1.5 to 2 µm. Unfortunately, the HHG yield scales roughly

like λ−(5−6)[36], then the efficiency of generating high-energy photons drops rapidly for

mid-IR driving lasers. To overcome this unfavorable scaling law with driving wavelength,

Popmintchev et al. improved phase matching by focusing the driving pulse into a hollow-core

fiber filled with He gas at very high pressure[37]. The attochirp of the harmonics goes like

1/λ[38], which implies that shorter attosecond pulses can be generated by mid-IR sources

with respect to Ti:Sappire lasers.

Recently, IAPs reaching the carbon K-shell edge (284 eV) have been demonstrated using

the attosecond lighthouse technique[39]. A two-cycle CEP-stabilized 1850 nm, 1 kHz, 230

µJ laser system is implemented with wavefront rotation to generate continuum harmonics.

After filtering a broad spectrum covering 225 to 300 eV was observed. By spatiotemporal

isolation an IAP was obtained with pulse duration estimated below 400 as. The PG method

was also used to generate continuum harmonics from 50 to 450 eV by a two-cycle, 1.7 µm

driving field obtained using OPCPA[40].

1.2 Characterization of attosecond pulses

The application of attosecond pulses requires the development of attosecond metrology.

Because the power spectrum can be easily measured, the main task is to determine the

spectral phase. Due to the low efficiency of HHG process, the energies of attosecond pulses

are on the order of picojoules to nanojoules today. The low intensity as well as the broad

bandwidth of attosecond pulses preclude the implementation of phase retrieval techniques
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developed for femtosecond lasers that rely on nonlinear optical gating such as autocorre-

lation, spectral phase interferometry for direct electric field reconstruction (SPIDER)[41]

or frequency-resolved optical gating (FROG)[42]. Because of the lack of effective nonlinear

materials in the XUV region, up to date most of the attosecond pulse characterizations

take advantage of the photoionization process. The phase retrieval of either APT or IAP

relies on analyzing the photoelectron spectrum emitted from noble gas atoms ionized by

the XUV pulse. To measure the phase, certain nonlinear processes are needed so that one

can compare the spectral phase at different frequencies. This was fulfilled by adding a

phase-locked IR laser field to the XUV photoionization process. Therefore the photoelec-

tron is emitted when an atom absorbs an XUV photon and then absorbs (or emits) one

or more IR photons. By changing the time delay τ between the XUV pulse and the IR

field, a set of photoelectron spectra which is often called a spectrogram or a trace can be

achieved. The information of the spectral phase of attosecond pulse has been embedded

into the photoelectron spectrogram.

1.2.1 Phase retrieval for attosecond pulse trains

The phase retrieval method for APTs has usually been referred to as “reconstruction of

attosecond beating by interference of two-photon transitions” (RABITT)[43] since the first

observation of APT[3]. The intensities of the XUV harmonics are too weak to cause non-

linear effects, and thus only cause single XUV photon ionization processes. Without the

IR field the photoelectron spectrum will show peaks at E = (2q + 1)ω − Ip from the odd

harmonics. Here ω is the fundamental frequency used to generate high harmonics. Ip is

the ionization potential of the target. The delayed IR field is usually from the one that

generates harmonics so it also has frequency ω. In the RABITT case its intensity is very

low (typically less than 1012 W/cm2). Thus the electron can only absorb or emit one IR

photon, and the whole process can be treated by second-order perturbation theory. Due

to the IR field, sidebands at E = 2qω − Ip appear in the photoelectron spectrum. The
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sidebands can be simply explained by two-path interference: the sideband S2q comes from

the electron ionized by (2q− 1)ω harmonic followed by absorbing one IR photon, or ionized

by (2q + 1)ω harmonic followed by emitting one IR photon. Moreover, the sideband varies

as we change the time delay τ between the XUV harmonics and the IR field, which can be

calculated via the second order perturbation theory:

S2q = A2q +B2q cos
[
2ωτ + (φ2q+1 − φ2q−1) + ∆φatom

2q

]
. (1.4)

Here φ2q+1 and φ2q−1 are the phase of two neighboring harmonics. ∆φatom
2q is an intrinsic

phase for a given target atom, often called the atomic phase. This phase depends on

the phase of matrix elements for above-threshold, two-photon ionization involved in the

generation of the sideband, and thus can be calculated theoretically. Clearly by measuring

the delay-dependent sideband signal, the phase difference between consecutive harmonics

φ2q+1−φ2q−1 can be retrieved. The RABITT method has been employed for measuring the

attochirp of harmonics on a broad spectral range[44].

1.2.2 Characterizing isolated attosecond pulses

IAP was first generated and measured by the attosecond streaking technique in 2001[45].

In the streaking measurement, the XUV pulse generates a replica of the amplitude and

phase of this attosecond pulse in the form of an electron wave packet by single-photon

ionization. The IR field acts as an ultrafast phase modulator that modulates the energy

spectra of the photoelectrons as a function of the time delay between the XUV and IR pulses.

Attosecond streaking can be understood classically[46]. After an electron is released to the

continuum at the time t, it is accelerated by the electric field of the laser and thus gains

energy from the time-dependent field from the moment of ionization to the end of the laser

pulse. If the electron is released with a kinetic momentum p0, then the detected momentum

after the turning off of the IR field can be predicted as p0 −A(t). Here A(t) is the vector
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potential of the laser pulse which is assumed to vanish after the pulse is over. To retrieve the

spectral phase of the XUV pulse from the streaking spectrogram, the “frequency-resolved

optical gating for complete reconstruction of attosecond bursts” (FROG-CRAB)[47] was

routinely used. If the IR intensity is weak like in the RABITT measurement, only one IR

photon contributes to the photoionization. Then the second-order perturbation theory can

be applied to analyze the spectrogram, which leads to another pulse characterization method

called “phase retrieval by omega oscillation filtering” (PROOF)[48]. The FROG-CRAB and

the PROOF method will be discussed in details in chapters 3 and 4 of this dissertation.

A different attosecond pulse characterization scheme is based on the implementation of

all-optical methods. This method is based on in situ measurements[49, 50] where the pro-

duction and the measurement of attosecond pulses are entangled. During the HHG process,

a weak control field is used to perturb the trajectory of the re-collision electron. Using a

perturbing field incident at an angle produces a modification to the phase of the re-collision

electron wave packet, which varies as the detection is translated across the attosecond pulse

wavefront. Therefore a spatial modulation can be induced on the attosecond pulse and

information of the electron wave packets can be transferred into the XUV radiation. By

measuring the far-field spatial profile of the XUV radiation at each frequency, it is possi-

ble to obtain a complete space-time characterization of attosecond pulses in the generation

medium and in the far-field. Recently the attosecond lighthouse technique has been used

to generate IAPs with 2-cycle 1.8 µm laser[51]. The spatial and temporal profile of each

attosecond pulse were measured by the in situ method. The measurement confirmed that

at the beam center the near-field pulse duration is 390 as and it increases to 420 as in the

far field. The advantages of the in situ method lie in its very high detection efficiency and

high signal-to-noise ratio, which allows single-shot measurement of the pulse. The drawback

of this method is that only the pulse created in the generation medium can be measured.

It is not applicable when the pulse has been filtered or transported.

So far none of these pulse characterization methods can measure the CEP of the attosec-
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ond pulses. Liu et al.[52] have demonstrated theoretically that the photoelectron spectra

generated by an IAP in the presence of an intense CEP-stable IR field (4.5× 1013 W/cm2)

are sensitive to the CEP of the attosecond pulse. This CEP dependence can be understood

in terms of the coherent superposition of two electron wave packets. The electron in the first

wave packet comes from direct photoionization by absorbing one XUV photon, like in the

standard situation of pulse characterization, while the electron in the second wave packet

is released by the intense IR field and then re-scattered by the parent ion, which is the

same as the above threshold ionization (ATI) electron. This sensitivity of the photoelectron

spectrum to the CEP of the IAP makes some possibility of the CEP measurement, however

such a measurement has not yet been demonstrated by experiment.

1.3 Probing ultrafast dynamics using attosecond pulses

Because of the rather low flux of attosecond pulses, the majority of attosecond experi-

ments that have been performed up to now have been two-color XUV-IR experiments where

the APT or IAP is combined with a delayed few-cycle IR pulse which serves as a clock.

Charged particles such as photoelectrons and ions formed in experiments can be detected

by multi-dimensional detectors such as the velocity map imaging (VMI) detectors[53] or

the cold target recoil ion momentum spectroscopy (COLTRIMS) detectors[54]. Recently

the attosecond transient absorption spectroscopy (ATAS)[55] was also developed which has

become a popular method.

The ATAS is an all-optical technique which measures the XUV absorption spectrum.

A typical experimental setup for ATAS is described in the following paragraph[56, 57]. A

few-cycle near-IR pulse is first split by a beam splitter in an interferometer. One arm

of the interferometer generates the attosecond pulse, while the other arm acts as the IR

probe pulse. The IAP generating arm may apply a certain optical gating technique to

manipulate the laser field, then the laser pulse enters the vacuum system and is focused
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into a gas cell, in which the HHG process occurs. After this gas cell, an IAP is produced

and propagates collinearly with the residual femtosecond laser field. This residual light

is subsequently blocked by a metal foil, which also acts as a filter for the attosecond pulse

spectral bandwidth. The attosecond pulse is then focused by a gold-coated grazing incidence

toroidal mirror. The IR probe arm propagates outside the vacuum system. A relative delay

can be introduced in this arm, and fused silica can be added for optimal pulse compression.

The IR pulse is first focused by a spherical focusing mirror and then is recombined with

the XUV pulse by a mirror with a small hole drilled in the center. The XUV pulse passes

through the hole in the center of the mirror, while the IR pulse reflects off the mirror,

resulting in an annular beam. The IR and XUV pulses are then overlapped spatially in

a gas cell or jet where they interact with the sample. After passing through the sample,

the IR pulse is blocked by a metal foil. The XUV pulse is dispersed by a grating and its

spectrum is detected, typically by an X-ray CCD camera. The temporal resolution of a

transient absorption experiment depends on the duration of the laser pulses used in the

experiment while the resolution in the frequency domain depends on the energy resolution

of the spectrometer. Therefore good temporal and frequency resolution can be achieved,

and the ATAS can provide powerful details about line shapes, wave packet superpositions

and decays.

In this section we briefly introduce a few important attosecond measurements using

attosecond pulses.

1.3.1 Probing electron correlation effects

The first investigation of electronic correlation on the few-femtosecond timescale was re-

ported in krypton using a sub-femtosecond XUV pulse centered around 97 eV by Drescher

et al.[5]. Ionization can occur from the 3d shell and the excited ionic core relaxes through

electron correlation by Auger decay, which leads to a doubly charged ion and the ejection of

a second electron. Using a synchronized few-cycle IR pulse the time-resolved Auger decay
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process was observed. The emission of the Auger wave packet in the continuum extends over

several optical cycles of the IR field due to the lifetime of the excited state. By measuring

the delay dependence of the sideband signal corresponding to the main Auger line, a lifetime

of 7.9 fs was estimated. This value corresponds to a line width of 88± 10 meV which is in

good agreement with the previous spectroscopic measurement.

The ATAS has been used to measure the dynamics of the two bound and correlated

electrons in helium atoms[58]. In this experiment the manifold of autoionizing states below

the N = 2 ionization threshold was excited by a broadband IAP and the time evolution of

the two-electron wave packet was observed by using a synchronized IR pulse. The IR pulse

can couple the two lowest-lying autoionizing states (2s2p and sp2,3+), and the quantum beat

among these two states was observed as a modulation of the absorption spectrum with a

period of 1.2 fs. From the beating one could retrieve the relative phase between the two

autoionizing components in the two-electron wave packet, and thus the time-dependent real-

space correlated electronic motion involving these autoionizing states can be visualized. It

was also demonstrated that the correlated electronic motion is not only probed but also

controlled by the intense IR field. The Fano line shape of the autoionizing states can be

strongly modified as the intensity of the IR pulse varies[56].

Attosecond spectroscopy also allow us to observe and order sequential relaxation pro-

cesses, that is, the ion-charge-state chronoscopy. If an intermediate ionic species of charge

is formed as the result of photoionization or of Auger decay, the synchronized IR pulse can

probe its formation and decay time and thus determine a variation in the yield of multiply

charged ions. The relaxation processes of highly excited xenon[59] and krypton[60] atoms

have been investigated by attosecond technique.

1.3.2 Delay in photoemission from atoms and solids

The interaction of XUV pulses with atoms or solids can lead to electron emission from

different atoms in mixture of gases, from different orbitals within the same atom, or from
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different band features of surfaces or solid-state materials. In a pioneering experiment done

by Schultze et al.[6], the photoionization “time delay” from the 2p and 2s subshells of Ne was

measured by attosecond streaking method. The IAP used in this experiment was centered at

106 eV with a full width at half maximum (FWHM) bandwidth of 14 eV, which supports a

pulse duration below 200 as if it is transform-limited (TL). Near-single-cycle IR pulses (750

nm in wavelength, 3.3 fs in FWHM duration) were used, with peak intensities of the order

of 1013 W/cm2. The photoelectron spectrum was composed by two electron wave packets

corresponding to the 2p and 2s shells, and was a function of the relative delay between

the XUV and the IR pulses. The analysis of the delay-dependent spectrogram relied on a

reconstruction method that stems from the FROG-CRAB. The reconstruction evidences a

delay of about 20 as between the emission of electrons from the 2p subshell with respect to

the 2s subshell, with the 2s electrons being emitted first. This work had triggered a bunch of

theoretical discussion on the physical origin of the observed time delay. It was believed that

such time delay measurements can deliver information about the electronic structure of the

target system including electron correlation, and about the electronic dynamics during the

photoionization process. However, theoretical investigations to date can only predict time

delays half of the measured value or even less[61]. Photoionization time delays between the

3s and 3p subshells of Ar in the photon energy range between 32 and 42 eV have also been

investigated by Klünder et al.[62], by using the RABITT technique in which the temporal

information is encoded in the phase of sideband oscillations. In this energy range, electronic

correlation is expected to play an important role. Therefore to explain the measured results,

electron correlation effects were explicitly taken into account by calculating the phase of

the single-photon transition matrix element using the random-phase approximation with

exchange (RPAE)[63]. Photoemission time delays between different noble gas atoms were

also measured, using either APTs[64, 65] or IAPs[66].

Photoemission delay in solids was first observed by Cavalieri et al. in 2007[67], where

a delay of about 100 as in the emission of photoelectrons from the 4f core shell and the
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conduction band of single-crystal tungsten was retrieved from attosecond streaking. Later

the same approach was applied to single-crystal magnesium[68], showing that the emission

from the 2p core-level and the valence band occurs simultaneously within the error bar of 20

as. Such measurements provide the possibility of studying the properties of the electronic

response and electronic transport during photoionization[69–71], for example, the forma-

tion of the Bloch wave packet, its propagation up to the surface-vacuum interface and the

electron-electron scattering[72]. The optical-frequency screening effect of the surface and

the penetration of the IR field to a single atomic layer was also investigated[73]. In a re-

cent streaking experiment on photoemission from solid magnesium[74], the time delays of

collective electron oscillations were investigated. Using an IAP with a central energy of 118

eV, the measured spectrogram consisted of both the band feature of the 2p level and the

first plasmon-like resonance feature at lower kinetic energies. The measured 60 as delay of

the plasmon feature was interpreted in terms of the intrinsic plasmon excitation and extrin-

sic plasmon excitation. Another measurement took advantage of the RABITT technique

and investigated the photoemission time delay on the surfaces of noble metals Ag(111) and

Au(111)[75]. The measurement in Ag indicated a strong variation of the photoemission

delay as a function of the sideband, while the results for Au showed much weaker variations.

It was indicated that the observed time delays cannot be interpreted only in terms of initial

state localization and electronic transport, and that other effects such as final state effects

might play an important role in the measured time delays. Photoemission time delays from

the Cu(100) and Cu(111) surfaces have been investigated theoretically within the RABITT

framework[76], which shows that the inclusion of the Fresnel-reflected incident IR pulse at

the metal-vacuum interface modifies photoelectron spectra and photoemission time delays

in a characteristic way. More discussions on attosecond streaking spectroscopy of atoms and

solids can be found in Ref. [77].
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1.3.3 probing electron wave packet dynamics in molecules

Attosecond technology paves a way of following and ultimately controlling the photo-induced

electron and nuclear dynamics in molecules. The first application of ion momentum imaging

with IAPs was reported in 2010, with the measurement of the electron localization in hydro-

gen molecules after attosecond excitation[78]. Dissociative ionization of D2/H2 molecules

were induced by a sequence of an IAP and an intense few-cycle IR pulse. The main experi-

mental observation consisted of a measurement of the kinetic energy-resolved asymmetry of

the ejection of D+/H+ ions left or right along the laser polarization axis. This asymmetry

results from two-color dissociative ionization as a function of the XUV-IR time delay. The

main observation is that oscillations occur in the asymmetry over a wide range of kinetic

energies and a wide range of time delays, including both positive delays (where IR follows

the IAP) and the region of time-overlap. The parity breaking of wave function implies elec-

tron localization. Such localization is caused by two mechanisms. A first mechanism, which

is dominant in the temporal overlapping region, is related to the excitation of autoionizing

states of D2/H2 followed by decay processes to the ground state 1sσg of D+
2 /H+

2 . The sec-

ond mechanism is based on the coupling between the 2pσu and 1sσg states of D+
2 /H+

2 by

the IR pulse. Further works conducted with multi-electron diatomic molecules have been

reported. Using both APTs and IAPs, the dissociative ionization dynamics of O2[79, 80]

and N2[81, 82] have been investigated through the XUV-IR pump-probe measurements.

1.3.4 Charge migration in molecules

Sudden ionization of a biologically relevant molecule by an XUV pulse can create a localized

hole. Since this state is non-stationary, charges across this molecule will be redistributed by a

correlation-driven process. This charge flow, which has been referred to as charge migration,

precedes any rearrangement of the nuclear skeleton and it can evolve on a temporal scale

ranging from a few femtoseconds down to tens of attoseconds. Such charge dynamics have

been theoretically predicted[83] and attracted many experimental groups to observe the
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charge migration along the molecular structure. The first experiment in this direction was

taken in 2012 on the aromatic amino acid phenylalanine[84], which revealed the presence of a

dynamics on a temporal scale of a few tens of femtoseconds triggered by ionization induced

by short APTs. A pioneering work performed on the same molecule but with a higher

resolution revealed the charge migration in this molecule after XUV photoionization[7]. In

this experiment, a 300-as IAP with photon energy between 15 and 35 eV was used to create

a sudden hole in the molecule. Therefore numerous excited states of the phenylalanine ion

can be produced. A 4-fs waveform controlled near-IR pulse was then used to fragment the

ion by strong field dissociative ionization as a function of time delay, resulting in COOH plus

the C6H5CH2CHNH++
2 dication. Charge migration was evidenced as an oscillatory evolution

in the yield of this doubly charged ion fragment. The 4.3 fs oscillation period is shorter than

the vibrational response of the molecule. Numerical simulations of the temporal evolution

of the electron wave packet created by the XUV pulse provided compelling evidence that

the measured oscillations can be related to a periodic charge density oscillation around the

amine functional group of this molecule. Moreover, a different kind of experiment based on

the electron re-collision and HHG spectroscopy was performed on the HCCI molecule[85],

where the hole migration in the HCCI ion after strong field ionization in the IR field was

observed.

1.4 Overview of this dissertation

In this thesis, our main focus is to investigate the accuracy of the current method of IAP

characterization and of photoionization time delay retrieval from XUV plus IR streaking

experiments, and also to propose new methods that can improve the accuracy or extend the

range of application. This thesis also includes quantum orbit analysis of HHG using mid-IR

driving lasers and therefore the long-wavelength behavior of the HHG yield for different

quantum orbits, which is of great importance to generating attosecond pulses in the soft
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X-ray region. Moreover, an example of probing ultrafast dynamics of electron correlation

in helium atom is given in this thesis as well.

In Chapter 2 we study the HHG process using the quantum orbit theory so that we

can separate the contribution of each individual quantum orbit to the HHG spectrum. To

be specific, we are interested in the long-wavelength behavior of these quantum orbits.

Wavelength scaling laws of the HHG yield at single-atom level corresponding to different

quantum orbits are obtained. The macroscopic phase matching of the harmonic field due

to different quantum orbits is also studied.

In Chapter 3 we check the accuracy of the FROG-CRAB method in IAP characterization

by using the photoelectron spectrograms calculated from both SFA and TDSE as the input

data. In Chapter 4 we carry out similar calibrations but for the PROOF method and its

improvement swPROOF. These methods are based on second-order perturbation theory for

weak IR field instead of the SFA model. These results can be treated as benchmarks of

accurate IAP measurement.

In Chapter 5 we take a fresh look at the main method of extracting temporal information

from the streaking spectrogram, namely FROG-CRAB. It looks possible to use FROG-

CRAB to extract the phase of the transition dipole from which the “photoionization time

delay” can be derived. By simulating the streaking spectrograms using SFA or TDSE, We

identify the conditions and demonstrate how the FROG-CRAB can be used to retrieve the

phase of the transition dipole. Due to the limitation of FROG-CRAB, we also propose a

fitting approach to extract the unknown dipole phase of an atom with the help of another

well-known reference target.

In Chapter 6 we present a recent experiment where the buildup of the 2s2p Fano res-

onance of helium was observed by using ATAS technique. We have derived an analytical

model to interpret the measured delay-dependent photoabsorption spectra. The agreement

between theory and experiment confirms that we have observed the dynamics of two-electron

correlation in the form of the time-dependent buildup of Fano line shape.
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Finally, we summarize this thesis in Chapter 7. Atomic units are used in this dissertation

unless otherwise indicated.
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Chapter 2

Quantum orbit analysis of HHG with

long-wavelength Lasers

The typical photon energy range available from HHG sources with a 800-nm Ti:Sapphire

laser has been limited to about 100 eV. The well-known cut-off law Ip+3.17Up with Up ∝ Iλ2

suggests that higher energy photons can be produced by the driving lasers with longer

wavelengths. Increasing the peak laser intensity is not an option because of the strong

depletion as well as the phase mismatch caused by excessive free electrons in the generation

medium. With recent development in OPA and OPCPA techniques, mid-IR lasers with

a wavelength of a few micrometers are available today, pushing the HHG photon energy

range beyond the water window and even to the keV region[30–34, 37, 40, 86]. Wavelength

scaling of HHG yield has been studied both theoretically and experimentally. A careful

experimental investigation demonstrated that HHG yield at constant laser intensity scales

as λ−6.3±1.1 in xenon and λ−6.5±1.1 in krypton over the wavelength range of 800-1850 nm[36].

Early theoretical investigation was mostly based on numerical solution of the time-dependent

Schrödinger equation (TDSE)[87–89]. These studies showed that HHG yield at constant

driving laser intensity drops as λ−x with x ≈ 5 − 6. All these studies were limited to

wavelengths below 2 µm and within a fixed photon energy range from 20 to 50 eV. More
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recent studies based on the strong field approximation (SFA) showed a scaling behavior with

a slightly different x[90–93]. By applying the quantum orbit (QO) theory[94–96], scaling

laws for long and short quantum orbits have also been investigated[93, 97–99].

In this chapter we apply the QO theory to separate the contribution of each individual

quantum orbit to the HHG spectrum, and therefore to study the long-wavelength behavior of

these quantum orbits. Section 2.1.1 gives a derivation of the widely-used SFA or Lewenstein

model[16] for HHG, through the S-matrix theory[100]. In Section 2.1.2 we first introduce

the saddle-point approximation to the SFA integral and obtain the basic equations for QO

theory. The concept of quantum orbit is a counterpart of the classical electron trajectory in

the laser field. In the middle of Section 2.1.2 a monochromatic laser field is considered, then

we discuss the born time, return time and returning energy which correspond to a particular

quantum orbit, within one half optical cycle. We split the quantum orbits into long and

short orbits as well as higher-order returns, and calculate the harmonic spectrum given by

each orbit separately. The calculations for a few-cycle driving laser are given at the end of

Section 2.1.2. In Section 2.2.1 we simplify the saddle-point equations in long-wavelength

limit and investigate the behavior of short and long orbits when mid-IR driving wavelengths

are applied. In Section 2.2.2 we use the idea of quantitative rescattering theory (QRS)[101]

to obtain the returning electron wave packet. We then study the wavelength scaling of

the wave packet at a fixed scaled photon energy. At long wavelengths, the wave packets

as functions of the scaled energy that belong to a particular quantum orbit are found to

have a universal form. Section 2.3 considers the propagation of each individual quantum

orbit in the generation medium. We verify that phase matching conditions are different for

different quantum orbits. Finally we give a brief summary of this chapter in Section 2.4.

The material in this chapter is adapted from the publication [99].
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2.1 Theoretical models for HHG

2.1.1 The Lewenstein model or SFA

SFA is a widely used model for atoms or molecules in an intense laser field. The main

assumption made in SFA is that the continuum electron dynamics is dominated by the laser

field while the core potential is a small perturbation that can be ignored to the lowest order.

The majority of strong field effects can be understood at least qualitatively by the SFA

model, which is much less computational demanding than solving the TDSE numerically.

In this subsection the SFA model describing HHG process is derived using a number of

approximations from the TDSE in the length gauge. This model is usually referred to as

Lewenstein model[16] that serves as a starting point in many HHG studies.

Consider an atom (or an ion) in a single-active-electron (SAE) approximation under the

influence of an intense laser field E(t), the Schrödinger equation in the length gauge takes

the form

i
∂

∂t
|Ψ(r, t)〉 =

(
−1

2
∇2 + V (r) + r · E(t)

)
|Ψ(r, t)〉, (2.1)

where V (r) is the potential due to the ionic core.

The total Hamiltonian can be decomposed as

H(t) = H0 + r · E(t). (2.2)

The field free Hamiltonian

H0 = −1

2
∇2 + V (r) (2.3)

determines the ground state |g〉 and the excited bound states {|e〉} of this system

H0|g〉 = −Ip|g〉, (2.4)

H0|e〉 = Ee|e〉, (2.5)
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where Ip is the ionization energy.

The electron in the continuum can also be described by the eigenstates of H0

H0|k〉 =
k2

2
|k〉, (2.6)

where k is the kinetic momentum of the outgoing electron. |g〉, {|e〉} and {|k〉} form a

complete basis set of the whole Hilbert space.

Consider the case that the field intensity is large enough so that the Keldysh parameter

γ =
√
Ip/2Up . 1, with Up =

E2
0

4ω2
L

being the ponderomotive energy. By assuming that the

electron in the ground state is tunnel ionized into continuum directly without intermediate

resonances, then all the excited bound states can be ignored. Furthermore, consider the

situation of weak ionization, which requires the intensity be much smaller than the satura-

tion intensity. In this situation only a small fraction of the targets are ionized during the

interaction time so that the depletion of the ground state can be neglected. Within the

above assumptions the wavefunction can be expanded as

|Ψ(t)〉 = eiIpt
{
|g〉+

∫
d3k b(k, t)|k〉

}
. (2.7)

The HHG spectrum with polarization along a direction ei can be calculated from the

time-dependent induced dipole moment

Di(t) = ei ·D(t) = ei · 〈Ψ(t)|r|Ψ(t)〉 (2.8)

from its Fourier components as

P (ω) ∝ ω4|Di(ω)|2. (2.9)

Consider the transitions between continuum state and ground state which contribute

to the harmonics while dropping the higher order continuum-continuum part, the induced
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dipole can be written as

D(t) =

∫
d3k 〈g|r|k〉b(k, t) + c.c.. (2.10)

Next we use the Keldysh theory (or the KFR model)[13, 102, 103] in the length gauge[104]

to evaluate the induced dipole moment. The KFR model (or its generalization in the

form of the S-matrix theory[100]), was initially derived for strong field above-threshold

ionization[13, 102–105]. The approach to HHG process here is equivalent to the original

derivation given by Lewenstein[16].

We introduce the time evolution operator U(t, t′) for the total Hamiltonian H(t) such

that

|Ψ(t)〉 = U(t,−∞)|Ψ(−∞)〉 = U(t,−∞)|g〉, (2.11)

and the time evolution operator U0(t, t′) for the field-free Hamiltonian H0 such that

U0(t,−∞)|g〉 = eiIpt|g〉. (2.12)

From Eq. (2.7), b(k, t) can be solved as

b(k, t) = e−iIpt〈k|U(t,−∞)|g〉. (2.13)

By substituting Eq. (2.13) into Eq. (2.10) we obtain

D(t) =

∫
d3k e−iIpt〈g|r|k〉〈k|U(t,−∞)|g〉+ c.c.

= e−iIpt〈g|rU(t,−∞)|g〉+ c.c.. (2.14)
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Based on the S-matrix theory[103, 104], the above equation can be rewritten as

D(t) = e−iIpt
{
−i
∫ t

−∞
dt′〈g|rU(t, t′)r · E(t′)U0(t′,−∞)|g〉

}
+ c.c.

= −i
∫ t

−∞
dt′e−iIpt〈g|rU(t, t′)r · E(t′)eiIpt

′ |g〉+ c.c.. (2.15)

The total Hamiltonian can also be decomposed as

H(t) = HF (t) + V (r). (2.16)

HF (t) is the Hamiltonian of a free electron in the laser field

HF (t) = −1

2
∇2 + r · E(t), (2.17)

whose eigenstates are the Volkov states (in the length gauge)

|χp(t)〉 = |p + A(t)〉e−i
∫ t
−∞ dt′′ 1

2
[p+A(t′′)]2 . (2.18)

Here |p〉 denotes the plane wave state

〈r|p〉 =
1

(2π)3/2
eip·r, (2.19)

and A(t) is the vector potential of the laser field

A(t) = −
∫ t

−∞
dt′E(t′). (2.20)

The time evolution operator corresponding to HF (t) can be constructed by Volkov states

UF (t, t′) =

∫
d3p|χp(t)〉〈χp(t′)|. (2.21)
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The operator U(t, t′) satisfies the Dyson equation

U(t, t′) = UF (t, t′)− i
∫ t

t′
dt′′UF (t, t′′)V U(t′′, t′). (2.22)

In the strong field regime, the electron-core potential V (r) can be treated as a small

perturbation for the electron in the continuum. In the lowest order approximation, Eq. (2.22)

is

U(t, t′) = UF (t, t′). (2.23)

In essence, within the above approximation, the electron in the continuum is treated as

a free particle moving in the strong laser field. Equation (2.15) is then reduced to

D(t) = −i
∫ t

−∞
dt′e−iIpt〈g|rUF (t, t′)r · E(t′)eiIpt

′ |g〉+ c.c.

= −i
∫ t

−∞
dt′
∫
d3p e−iIpt〈g|r|χp(t)〉〈χp(t′)|r · E(t′)eiIpt

′ |g〉+ c.c.

= −i
∫ t

−∞
dt′
∫
d3p e−iIpt〈g|r|p + A(t)〉E(t′) · 〈p + A(t′)|r|g〉eiIpt′e−i

∫ t
t′ dt

′′ 1
2

[p+A(t′′)]2 + c.c.

(2.24)

= −i
∫ t

−∞
dt′
∫
d3pd∗(p + A(t))E(t′) · d(p + A(t′))e−iS(p,t,t′) + c.c.. (2.25)

In Eq. (2.25), d(p) = 〈p|r|g〉 is the dipole matrix element for the bound-free transition

where |p〉 denotes the plane wave state, and the phase factor

S(p, t, t′) =

∫ t

t′
dt′′

1

2
[p + A(t′′)]2 + Ip(t− t′) =

∫ t

t′
dt′′
(

1

2
[p + A(t′′)]2 + Ip

)
. (2.26)

The integral in Eq. (2.24) has a simple and intuitive interpretation which corresponds

to the quasi-classical three step model[15, 16]: p can be treated as the classical canonical

momentum, since the electron-ion interaction is neglected for the continuum electron, p

turns into a conserved quantity; p + A(t) can be assumed as the instantaneous velocity at
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time t; the factor E(t′) · 〈p + A(t′)|r|g〉eiIpt′ describes the ionization process which occurs

at time t′ while e−iIpt〈g|r|p + A(t)〉 determines the amplitude of photo-recombination at

time t; the factor e−i
∫ t
t′ dt

′′ 1
2

[p+A(t′′)]2 is the phase accumulated from t′ to t while the electron

propagating in the continuum; at a given recombination (or photon emission) time t the

induced dipole is obtained by integrating over the contributions from all ionization time

t′ < t and all canonical momentum p. The factor S(p, t, t′) in Eq. (2.25) is often referred

to as the quasi-classical action but it also incorporates some effects of the ionization and

recombination process through its dependence on Ip, see Eq. (2.26). The complex conjugate

part in the dipole moment is the time reversal of the above three-step process which is a

pure quantum contribution and has no classical interpretation.

In practice the SFA form of Eq. (2.25) is rarely used. Instead, a simpler form, based

on the saddle point approximation for the integral over 3D momentum p in Eq. (2.25), has

been used more often. Mathematically, one can apply the saddle-point approximation to a

n-dimensional integral as the following

∫
dnω E(ω)eif(ω) ≈

∑
s

√
(2πi)n

det(f ′′(ωs))
E(ωs)e

if(ωs). (2.27)

In Eq. (2.27) the saddle point ωs is determined by the saddle point equation

∇ωf(ωs) = 0, (2.28)

and f ′′(ωs) = ∇ω∇ωf(ωs) is the n× n Hessian matrix at the saddle point ωs.

Now the saddle point equations for p in Eq. (2.25) can be written in a vector form as

∇pS(p, t, t′) = ∇p

∫ t

t′
dt′′
(

1

2
[p + A(t′′)]2 + Ip

)
=

∫ t

t′
dt′′∇p[p + A(t′′)] · [p + A(t′′)] =

∫ t

t′
[p + A(t′′)]dt′′ = 0, (2.29)
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which gives the saddle point solution ps as

ps = − 1

t− t′

∫ t

t′
A(t′′)dt′′. (2.30)

Since ∇pS(p, t, t′) =
∫ t
t′

v(t′′)dt′′ = r(t) − r(t′), the semi-classical interpretation of

Eq. (2.29) is clear: the dominant contribution to the HHG photon emission comes from

the trajectory with canonical momentum ps such that the electron born at time t′ returns

to the same position at time t.

The Hessian matrix of S(p, t, t′) is given by

∇p∇pS(p, t, t′) =

∫ t

t′
∇p[p + A(t′′)]dt′′ = (t− t′)I, (2.31)

where I is the 3× 3 unit matrix.

By using Eq. (2.27) the saddle-point approximation of Eq. (2.25) can be written as

D(t) = −i
∫ t

−∞
dt′

√
(2πi)3

det(−(t− t′)I)
d∗(ps + A(t))E(t′) · d(ps + A(t′))e−iS(ps,t,t′) + c.c.

= −i
∫ t

−∞
dt′
(
−2πi

t− t′ − iε

)3/2

d∗(ps + A(t))E(t′) · d(ps + A(t′))e−iS(ps,t,t′) + c.c..

(2.32)

Here ε is an arbitrary small positive regularization constant introduced to smooth out the

singularity. The saddle-point approximation for the integral over p yields a factor (t−t′)−3/2

which accounts for the quantum diffusion effect, i.e., the spread of the wave packet of the

continuum electron. Larger excursion time in the continuum will have less contribution to

the harmonic emission.

Consider the case that the electric field is linearly polarized along the x-axis. Equa-

tion (2.30) shows that ps is also along the x-axis. Equation (2.32) for the induced dipole
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moment Dx(t) along the x-axis reduces to a one-dimensional equation

Dx(t) = −i
∫ t

−∞
dt′
(
−2πi

t− t′ − iε

)3/2

d∗x(ps + A(t))dx(ps + A(t′))E(t′)e−iS(ps,t,t′) + c.c.,

(2.33)

in which dx(p) = 〈pex|x|g〉 is the x component of the dipole transition matrix element from

the ground state to the plane wave state propagating along x axis with momentum p.

Equations (2.25), (2.32) and (2.33) are the standard equations in the SFA (or the Lewen-

stein model) for the laser induced dipole moment. To account for the ground state deple-

tion a damping factor a(t) is introduced[16]. This factor is often calculated by using the

Ammosov-Delone-Krainov (ADK) theory[101, 106].

2.1.2 The quantum orbit theory

Formulation and basic equations

Equation (2.33) shows the time dependent dipole moment induced by the laser field. The

HHG power spectrum is given by

P (ω) ∝ ω4|Dx(ω)|2, (2.34)

in which ω is the harmonic photon energy. Dx(ω) is the Fourier transform of Dx(t)

Dx(ω) =

∫ ∞
−∞

Dx(t)e
iωtdt =

∫ ∞
−∞

[
D(+)
x (t) + c.c.

]
eiωtdt = D(+)

x (ω) +
[
D(+)
x (−ω)

]∗
, (2.35)

where

D(+)
x (ω) = −i

∫ ∞
−∞

dt

∫ t

−∞
dt′
(
−2πi

t− t′ − iε

)3/2

d∗x(ps + A(t))dx(ps + A(t′))E(t′)e−iΘ(ps,t,t′).

(2.36)
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In the above equation

Θ(ps, t, t
′) = S(ps, t, t

′)− ωt, (2.37)

S(ps, t, t
′) =

∫ t

t′
dt′′
(

1

2
[ps + A(t′′)]2 + Ip

)
, (2.38)

and

ps = − 1

t− t′

∫ t

t′
A(t′′)dt′′. (2.39)

The basic idea of the QO theory is to further apply the saddle-point approximation to

the two-dimensional integral Eq. (2.36) over t and t′[16, 96]. Saddle point equations for t

and t′ reads

∂Θ

∂t′
=
∂S

∂t′
= −1

2
[ps + A(t′)]2 − Ip = 0

⇒ 1

2
[ps + A(t′)]2 = −Ip, (2.40)

∂Θ

∂t
=
∂S

∂t
− ω =

1

2
[ps + A(t)]2 + Ip − ω = 0

⇒ 1

2
[ps + A(t)]2 = ω − Ip. (2.41)

Equation (2.40) implies that when the electron is born to the continuum, the “kinetic

energy” is a negative value −Ip, which accounts for the quantum effect of tunneling ion-

ization. Equation (2.41) describes energy conservation when the electron recombines with

the ionic core. Upon recombination the electron returns to the ground state and emits a

photon with energy ω. For a given ω one can solve Eqs. (2.40) and (2.41) [with ps given

in Eq. (2.39)] simultaneously to find a series of saddle points (t′s, ts). Due to the constraint

imposed by Eq. (2.40) both the solutions t′s and ts are complex-valued. Each solution (t′s, ts)

determines a unique “quantum orbit” which can be viewed as an extension of the classical

orbit of an electron moving in the electric field[95, 96]. The saddle-point approximation of
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Eq. (2.36) reads

D(+)
x (ω) = −i

∑
s

√
(2πi)2

det(Θ′′)

(
−2πi

ts − t′s

)3/2

d∗x(ps + A(ts))dx(ps + A(t′s))E(t′s)e
−iΘ(ps,ts,t′s).

(2.42)

In the spirit of Feynman’s path integrals[94], D
(+)
x (ω) is a superposition of the contri-

bution from individual quantum orbit weighted by e−iΘ(ps,ts,t′s). The quantum orbit that

corresponds to negative ω does not have any classical counterpart and will have little con-

tribution. For this reason in a typical quantum orbits calculation, the second term on the

right hand side of Eq. (2.35) is dropped, i.e.

Dx(ω) ≈ D(+)
x (ω) =

∑
s

Dxs(ω), (2.43)

where Dxs(ω) denotes the induced dipole moment by an individual quantum orbit

Dxs(ω) =
2π√

det(S ′′)

(
−2πi

ts − t′s

)3/2

d∗x(ps + A(ts))dx(ps + A(t′s))E(t′s)e
−iΘ(ps,ts,t′s).

(2.44)

Here the 2× 2 Hessian matrix S ′′ is given as

S ′′ =

 ∂2S(ps,t,t′)
∂t2

∂2S(ps,t,t′)
∂t∂t′

∂2S(ps,t,t′)
∂t′∂t

∂2S(ps,t,t′)
∂t′2


t=ts,t′=t′s

. (2.45)

From Eqs. (2.38) and (2.39) one can obtain

∂2S

∂t2

∣∣∣∣
ts,t′s

= − [ps + A(ts)]
2

ts − t′s
− E(ts)[ps + A(ts)], (2.46)
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∂2S

∂t′2

∣∣∣∣
ts,t′s

= − [ps + A(t′s)]
2

ts − t′s
+ E(t′s)[ps + A(t′s)], (2.47)

∂2S

∂t∂t′

∣∣∣∣
ts,t′s

=
∂2S

∂t′∂t

∣∣∣∣
ts,t′s

=
[ps + A(ts)][ps + A(t′s)]

ts − t′s
. (2.48)

In Eq. (2.43) only the quantum orbits leading to negative Im{Θ} are included in order to

obtain converged results.

QO theory of HHG by monochromatic laser fields

In this subsection we consider harmonic emission by a monochromatic laser field within the

QO theory where the laser-induced dipole can be calculated analytically. The laser field is

given by E(t) = E0 cos(ωLt). Here ωL is the frequency of the driving laser, and the optical

period is TL = 2π/ωL. Due to the periodicity and symmetry the HHG spectrum induced by

such a monochromatic laser field contains only odd harmonics of the fundamental frequency

ωL. The intensity of these harmonics is fully determined by the induced dipole moment

within half optical cycle. Therefore in the following discussion we focus mainly on the sub-

cycle dynamics. In the quantum orbits analysis only the orbit that has a ionization time

(often called born time) within the half optical cycle, (−TL/4, TL/4), has to be considered.

For a monochromatic electric field,

A(t) = −
∫
E0 cos(ωLt

′)dt′ = −E0

ωL
sin(ωLt), (2.49)

and

ps = − 1

t− t′

∫ t

t′
A(t′′)dt′′ = −E0

ωL

(
cos(ωLt)− cos(ωLt

′)

ωLt− ωLt′

)
. (2.50)

The saddle point equations (2.40) and (2.41) now become

(
E0

ωL

)2(
cos(ωLt)− cos(ωLt

′)

ωLt− ωLt′
+ sin(ωLt

′)

)2

= −2Ip, (2.51)
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(
E0

ωL

)2(
cos(ωLt)− cos(ωLt

′)

ωLt− ωLt′
+ sin(ωLt)

)2

= 2(ω − Ip). (2.52)

By introducing the ponderomotive energy Up =
E2

0

4ω2
L

, the equations above can be rewritten

as (
cos θ − cos θ′

θ − θ′
+ sin θ′

)2

= − Ip
2Up

= −γ2, (2.53)

(
cos θ − cos θ′

θ − θ′
+ sin θ

)2

=
(ω − Ip)

2Up
=
ω̃

2
, (2.54)

where θ′ = ωLt
′, θ = ωLt are the born and return time scaled by the optical period,

γ =
√

Ip
2Up

is the Keldysh parameter and ω̃ = ω−Ip
Up

can be interpreted as the kinetic energy

of the returning electron scaled by the ponderomotive energy. By including the quantum

origin of the tunneling process, the solutions θ′s and θs are all complex values.

The simple classical model assumes the electron is born with zero kinetic energy, which

is equivalent to γ = 0. Then Eqs. (2.53) and (2.54) reduce into

(cos θc − cos θ′c) + (θc − θ′c) sin θ′c = 0, (2.55)

2(sin θc − sin θ′c)
2 = ω̃. (2.56)

In this classical picture θ′c and θc are all real quantities. We can expect that real parts

of quantum orbit solutions Re{θ′s} and Re{θs} are counterparts of the classical born and

return time and will approach them as γ → 0.

In the classical picture, as shown in Fig. 2.1 and Fig. 2.2, the electron born before the

peak field (−90◦ < θ′ < 0◦) will not return to the core. The electron born after the peak

field (0◦ ≤ θ′ < 90◦) has a chance to revisit the core with kinetic energy ω̃Up. Moreover,

the electron born in the region 0◦ ≤ θ′ < 12◦ may revisit its core more than once, which

is often named higher order returns. The recombination time for the first return roughly

lies in 110◦ ≤ θ < 360◦, for the second return 360◦ ≤ θ < 540◦, for the third return

540◦ ≤ θ < 720◦. Each return has its maximum return energy (cutoff) such as ω̃ = 3.2 for
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the first return (θ′ = 17◦ correspondingly), ω̃ = 1.5 for the second, ω̃ = 2.4 for the third.

The overall cutoff of the HHG is dominated by the first return, i.e. ωcutoff ≈ 3.2Up + Ip.

In each return the orbit that has a particular return energy ω̃ below cutoff splits into two

branches: the orbit which returns earlier is named “short” orbit while that returns later is

named “long” orbit. For odd-number returns (the first, third, fifth ...) the electron born

earlier will follow the long orbit, however for even-number returns (the second, fourth, ...)

the electron born earlier will follow the short orbit. In our discussion the label ’S1’ refers

to the short orbit in the first return, ’L1’ refers to the long orbit in the first return and so

forth.

Figures 2.1 and 2.2 show that the quantum orbit solutions Re{θ′s} and Re{θs} (at γ =

0.94) in general agree with the classical quantities θ′c and θc. However our example also

illustrates some discrepancies between them. The time interval of ionization given by the

QO is always narrower than the classical prediction, in particular, the born interval of the

S1 orbit is reduced to 17◦ < θ′ < 35◦. Compared to the classical result, the cutoff of the

first return is extended to ω̃ = 3.8 due to quantum tunneling and diffusion[16, 96], and the

cutoff of the third return is also increased, while the cutoff of the second return is decreased.

The imaginary part of the born time Im{θ′s} is a direct consequence of the quantum

tunneling. As we shall discuss in Section 2.2.1, Im{t′s} may be interpreted as the time

required for the electron to tunnel through the barrier[107]. This tunneling time mainly

depends on Ip and the field strength when the electron is born. As Fig. 2.3(a) shows,

Im{θ′s} for all orbits except S1 are very close to each other, because these orbits are all born

in a narrow time interval right after the peak field so that the electric field at their born time

are almost the same. On the contrary the S1 orbit is born later so that the corresponding

electric field is much weaker, which leads to a longer tunneling time. Figure 2.3(b) shows

that the imaginary part of the return time Im{θs} is close to zero for all orbits except S1.

In other words, for the orbits with long excursion time the recombination is well separated

from tunneling so θs is dominated by the real classical recombination time. On the contrary,
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Figure 2.1: Red line: the real part of ionization time and recombination time for S1
(dashed) and L1 (solid) as functions of ω̃, obtained from Eqs. (2.53) and (2.54) with param-
eters: 800 nm wavelength, 1.5× 1014 W/cm2 peak intensity, argon target (γ = 0.94). Solid
black line: classical born and return time calculated from Eqs. (2.55) and (2.56). Dot-dashed
green line: profile of the electric field.

Figure 2.2: The real part of (a) ionization time and (b) recombination time for higher
order returns as functions of ω̃ calculated from both quantum orbits and classical equations.
The parameters are the same as in Fig. 2.1.
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for the S1 orbit, especially at low energies ω̃ ≤ 2, the excursion time is relatively small so

that the recombination feels the influence of the quantum nature of the tunneling ionization,

which gives rise to the nonzero imaginary return time.

Figure 2.3: (a) Im{θ′s} and (b) Im{θs} for quantum orbits up to the third return as func-
tions of ω̃ calculated from Eqs. (2.53) and (2.54). The parameters are the same as in
Fig. 2.1.

From Eqs. (2.37) and (2.38) the factor Θ corresponding to the saddle point solution

(t′s, ts) can be derived as follows:

Θs =

∫ ts

t′s

dt′′
(

1

2
[ps + A(t′′)]2 + Ip

)
− ωts

= Ip(ts − t′s) +
1

2
p2
s(ts − t′s) + ps

∫ ts

t′s

A(t′′)dt′′ +
E2

0

2ω2
L

∫ ts

t′s

sin2(ωLt
′′)dt′′ − ωts

= Ip(ts − t′s)−
E2

0

2ω2
L

(
cos(ωLts)− cos(ωLt

′
s)

ωLts − ωLt′s

)2

(ts − t′s)

+
E2

0

4ω2
L

[
(ts − t′s)−

sin 2ωLts − sin 2ωLt
′
s

2ωL

]
− ωts

=

[
Ip
ωL
− E2

0

2ω3
L

(
cos θs − cos θ′s

θs − θ′s

)2

+
E2

0

4ω3
L

]
(θs − θ′s)−

E2
0

8ω3
L

(sin 2θs − sin 2θ′s)−
ω

ωL
θs

=
2Up
ωL

{[
γ2 +

1

2
−
(

cos θs − cos θ′s
θs − θ′s

)2
]

(θs − θ′s)−
1

4
(sin 2θs − sin 2θ′s)−

(
ω̃

2
+ γ2

)
θs

}
.

(2.57)

Since θ′s, θs are complex, Θs is also a complex quantity. The real part Re{Θs} = Re{Ss}−
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ωRe{ts}, in which Re{Ss} is the phase accumulated during the electron excursion in the

continuum. As Fig. 2.4(a) shows, larger excursion time leads to larger phase accumulated.

From Fig. 2.4(b), the imaginary part Im{Θs} is always negative, which will result in a

damping factor eIm{Θs} in the induced dipole Eq. (2.44) and thus a factor e2Im{Θs} to the

HHG yield. This exponential factor is very critical to the HHG yield and it is related to

the tunneling ionization rate[97]. We shall discuss this point further in Section 2.2.1. This

ionization rate depends sensitively on the strength of the electric field when the electron is

born. Since the field strength at born time does not significantly change for L1 and all higher

order returns, Im{Θs} for those orbits are almost on top of each other and independent of

ω̃. On the other hand, the S1 orbit is born in a weaker field so that its Im{Θs} value is

well below others’. For S1 orbit, as ω̃ grows the field strength at born time will have a

considerable increase [see Fig. 2.1] and Im{Θs} will also increase.

Figure 2.4: (a) Re{Ss} and (b) Im{Θs} for quantum orbits up to the third return as
functions of ω̃ calculated from Eq. (2.57). The parameters are the same as in Fig. 2.1.

To evaluate Dxs(ω) one needs to know the bound-free transition dipole matrix element

dx(p) = 〈pex|x|g〉. In our quantum orbit analysis the ground state is approximated by a

Gaussian form[16]

〈r|g〉 =
(a
π

)3/4

e−ar
2/2. (2.58)
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So dx(p) has a simple analytical expression

dx(p) = i

(
1

πa

)3/4
p

a
e−p

2/2a, (2.59)

with a = 0.8Ip. This Gaussian form is convenient since the transition dipole does not have

any singularity in the complex plane which could lead to unnecessary complications.

Figure 2.5(a) plots the contribution |Dxs(ω)|2 from each quantum orbit driven by an

800 nm laser. There are two main factors that determine the HHG yield: the ionization

rate given by e2Im{Θs} and the quantum diffusion described by |ts − t′s|−3. The S1 orbit has

the least excursion time and thus the least quantum diffusion, however its ionization rate

is considerably smaller. The quantum orbit method shows the latter will dominate so that

S1 is weaker than L1. In the lower plateau region S1 may be comparable or even weaker

than some of the higher order returns. For the orbits other than S1, since their ionization

rates are comparable the dominant factor will be diffusion. Therefore HHG yield drops as

the excursion time grows. For example, in the energy range that all returns up to the third

contribute, L1>S2>L2>S3>L3, as expected. At the cutoff of each return the short and

long orbits merge together and the saddle-point approximation produces a spike. Beyond

the cutoff the contribution from the short orbit diverges so it must be discarded. Such

unphysical divergence can be removed by including the third order derivative term in the

Taylor expansion of S[93] and applying the uniform approximation[95]. We remark that

the SFA based quantum orbit method tends to underestimate the contribution from S1 as

compared to the TDSE simulation[108, 109]. Figure 2.5(b) shows the HHG spectrum as the

coherent superposition of various quantum orbits. S1+L1 has a relatively simple oscillating

profile since only two orbits are involved. After including higher order returns the spectrum

has a more complicated structure, which indicates considerable contribution from higher

order returns to the lower plateau. Therefore at single atom level the effect from higher

order returns cannot be neglected. However as we consider the macroscopic propagation
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effect this situation may be changed due to the phase matching of each orbit, see Section

2.3.

Figure 2.5: (a) HHG spectrum from each individual quantum orbit born in half cycle. (b)
HHG spectrum as a coherent summation of S1 and L1 (dashed red line) and summation of
all orbits up to the fifth return (solid black line). The parameters are the same as in Fig. 2.1.

QO theory for few-cycle laser pulses

The QO analysis can also be applied to the situation when the driving laser is a short pulse,

for instance, a pulse with a cosine-squared envelope

E(t) = E0 cos2

(
πt

τ

)
cos(ωLt+ ψ) − τ

2
≤ t ≤ τ

2
. (2.60)

Here τ is the total duration of this pulse, or equivalently, a full width at half maximum

(FWHM) duration is approximately τ/2.75, ψ is the carrier-envelope-phase (CEP), and E0

is the peak electric field strength.

In the short pulse case (also called non-adiabatic case), due to the breakdown of peri-

odicity we have to treat each half optical cycle individually. Specifically, we need to solve

the saddle point equations (2.40) and (2.41) to get all quantum orbits for the whole pulse.

Figure 2.6 shows the time profile of a short pulse and the corresponding HHG emission time

of the first return as function of photon energy. Clearly, photons emitted in different half

cycles have different cutoff energies. The total HHG spectrum is dominated by the emission
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from a few half cycles near the center of the laser pulse, where the photon has the largest

cutoff and ionization is also strongest. This is different from the monochromatic light case

in which there are numerous half cycles that contribute to the harmonic spectrum equally.

The HHG spectrum from a short laser pulse shows a complicated structure as in Fig. 2.7

other than sharp odd harmonics. Generally, a few-cycle laser pulse will yield a relatively

broad and continuous HHG spectrum in the higher plateau. Fig. 2.7 also shows that the

QO method is in qualitative agreement with the direct SFA integral given by Eq. (2.33).

The cutoff position and the main features of the HHG spectrum are successfully reproduced

by QO.

Figure 2.6: Dashed red line: profile of the electric field of a short laser pulse. Solid black
line: HHG emission time Re{ts} as a function of photon energy (first return only), obtained
from Eqs. (2.40) and (2.41) for argon (Ip=15.76 eV). Laser parameters: wavelength 800nm,
peak intensity 2.0× 1014 W/cm2, FWHM 6 fs, ψ = 0.
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Figure 2.7: HHG spectrum with the short pulse as given in Fig. 2.6, obtained from numer-
ical SFA integral Eq. (2.33) (red dashed line) and from the quantum orbit method (blue solid
line).

2.2 QO analysis on HHG with mid-IR driving lasers

2.2.1 Long and short orbits at long wavelengths

In this section we apply the quantum orbit analysis on HHG driven by mid-infrared lasers.

Let’s imagine a situation when the laser wavelength λ is increased gradually while the field

strength E0 is fixed, such that the laser-atom interactions are kept in the tunneling regime.

Since the HHG cutoff is determined by Ip + 3.2Up and Up ∝ λ2, by using a mid-infrared

laser the HHG spectrum may be extended to the water window or even the keV region. The

Keldysh parameter

γ =

√
Ip

2Up
=

√
2Ip

E0

ωL ∝ λ−1, (2.61)

where ωL = 2πc/λ is the laser frequency. Clearly γ decreases as the wavelength is increased,

thus in the long wavelength limit γ � 1 and ionization falls into the deep tunneling regime.

In this limit tunneling (imaginary part of the born time) only occurs within a very tiny

time interval compared to the optical period. Our goal here is to seek further simplification
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in the QO theory in order to investigate the behavior of harmonics due to long and short

orbits in this regime.

In the long wavelength limit, the saddle point equations (2.53) and (2.54) can be simpli-

fied by approximating the recombination time θ to be a real quantity[97, 110] while keeping

the born time θ′ complex. Here we separate the real and imaginary part of the ionization

time explicitly: θ′ = α + iβ, 0 < α < π
2

and β > 0. The sin θ′ and cos θ′ term can be

rewritten as

sin θ′ = sin(α + iβ) = sinα cosh β + i cosα sinh β, (2.62)

cos θ′ = cos(α + iβ) = cosα cosh β − i sinα sinh β. (2.63)

Since sin θ is real in this approximation, by following the constraint Eq. (2.54), we have to

approximate cos θ−cos θ′

θ−θ′ to be real consistently, i.e.

cos θ − cos θ′

θ − θ′
≈ Re

{
cos θ − cos θ′

θ − θ′

}
= Re

{
cos θ − cosα cosh β + i sinα sinh β

θ − α− iβ

}
=

(cos θ − cosα cosh β)(θ − α)− β sinα sinh β

(θ − α)2 + β2
. (2.64)

Then Eqs. (2.53) and (2.54) can be reduced to

cosα sinh β = γ, (2.65)

(cos θ − cosα cosh β)(θ − α)− β sinα sinh β

(θ − α)2 + β2
+ sinα cosh β = 0, (2.66)

2(sin θ − sinα cosh β)2 = ω̃. (2.67)

When γ � 1 and the ionization time is not too far from the (sub-cycle) peak of the

electric field, for example 0 < α < π
3
, from Eq. (2.65) we get

sinh β =
γ

cosα
, (2.68)
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cosh β =

√
1 +

( γ

cosα

)2

≈ 1 +
γ2

2 cos2 α
, (2.69)

β = ln

[
γ

cosα
+

√
1 +

( γ

cosα

)2
]
≈ γ

cosα
− γ3

6 cos3 α
. (2.70)

Substituting Eqs. (2.68)-(2.70) into Eqs. (2.66) and (2.67) yields

(cos θ − cosα) + (θ − α) sinα +
γ2

2 cosα

(
(θ − α) sinα

cosα
− 1

)
= 0, (2.71)

2(sin θ − sinα)2 − 2 sinα(sin θ − sinα)

cos2 α
γ2 = ω̃. (2.72)

In Eqs. (2.71) and (2.72) we keep terms up to the order of γ2. One can solve these equations

to obtain the real born time αs and return time θs for a given scaled photon energy ω̃ =

(ω − Ip)/Up. These solutions will depend on the Keldysh parameter γ. Clearly as γ → 0,

Eqs. (2.71) and (2.72) reduce to classical equations (2.55) and (2.56), thus αs and θs will

converge to their classical counterparts θ′c and θc, respectively. This convergence is shown in

Fig. 2.8 for the first return. Higher order returns also have similar convergence. While clear

differences can be seen for the 0.8 µm case in Fig. 2.8, the QO results become very close

to the classical values quickly for λ & 1.6 µm. Additionally, the born time of S1 converges

slower than L1 in the small ω̃ region. When ω̃ ≈ 1 we observe that the born time of S1

changes significantly from 34◦ (0.8 µm case) to 48◦ (long wavelength case).

From Eq. (2.70) one can deduce that

Im{t′s} =
βs
ωL
≈ γ

ωL cosαs
=

√
2Ip

E0 cosαs
=

√
2Ip

Es
. (2.73)

Here Es = E0 cosαs = E0 cos(ωLRe{t′s}) is the electric field right at the born time. When

γ � 1, during the tunneling process the electric field can be treated as quasi-static with the

strength Es. Equation (2.73) indicates that the imaginary part of t′s can be interpreted as

a timescale of quantum tunneling[13]. Fig. 2.9(a) verifies that as the wavelength increases,
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Figure 2.8: The real part of (a) ionization time and (b) recombination time for the long
(L1) and short (S1) orbit of the first return as functions of ω̃, obtained by solving Eqs. (2.53)
and (2.54) for wavelengths [0.8 − 6.0] µm, peak intensity 1.5 × 1014 W/cm2, argon target
(Ip=15.76 eV). The classical born and return time are also shown as solid black curves.

Im{t′s} converges to

√
2Ip

E0 cos θ′c
(black curve) predicted by Eq. (2.73). Figure 2.9(b) shows that

for long wavelengths the imaginary part of the recombination time Im{ts} quickly converges

to zero, which validates the approximations made in the above derivation.

Starting from Eq. (2.57), for a long quantum orbit (αs < 17◦), when γ � 1, Im{Θs} can
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Figure 2.9: (a) Im{t′s} and (b) Im{ts} for the long and short orbits of the first return
as functions of ω̃ obtained by solving Eqs. (2.53) and (2.54) for wavelengths [0.8 − 6.0]
µm. Other parameters are the same as in Fig. 2.8. The solid black curve in (a) shows the
tunneling time given in Eq. (2.73) with αs replaced by the classical born time θ′c.

be approximated as

Im{Θs} ≈
2Up
ωL

{
−βs

[
γ2 +

1

2
− sin2 αs cosh2 βs

]
+

1

2
cos 2αs sinh βs cosh βs

}
≈ 2Up

ωL

{
−
(

γ

cosαs
− γ3

6 cos3 αs

)[
γ2 +

1

2
− sin2 αs

(
1 +

γ2

cos2 αs

)]
+

1

2
cos 2αs

γ

cosαs

(
1 +

γ2

2 cos2 αs

)}
≈ − 2Upγ

ωL cosαs

{
γ2 +

1

2
− sin2 αs −

γ2 sin2 αs
cos2 αs

− γ2

12 cos2 αs

+
γ2 sin2 αs
6 cos2 αs

− 1

2
cos 2αs −

1

4

γ2 cos 2αs
cos2 αs

}
= − 2Upγ

3

ωL cosαs

{
1− 5 sin2 αs

6 cos2 αs
− 1

12 cos2 αs
− 1

4

cos 2αs
cos2 αs

}
= − 4Upγ

3

3ωL cosαs
(1− tan2 αs) ≈ −

(2Ip)
3/2

3E0 cosαs
. (2.74)
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From Eq. (2.44), contribution from this quantum orbit to HHG spectrum depends on an

exponential factor

|Dxs(ω)|2 ∝ e2Im{Θs} ≈ e
− 2(2Ip)3/2

3E0 cosαs = e−
2(2Ip)3/2

3Es . (2.75)

Figure 2.10: Im{Θs} for the long and short orbit of the first return as the function of
ω̃ given by Eq. (2.57) for wavelengths from 0.8 µm to 6.0 µm. Other parameters are the
same as in Fig. 2.8. The solid black curve shows the factor given in Eq. (2.74) where αs is
replaced by the classical born time θ′c.

The exponential factor in Eq. (2.75) is similar to a Landau-Dykhne type of tunneling

ionization for an atom in a static field Es[13, 106]. Therefore the QO theory can account

for the tunneling ionization rate in its electron wave packet. The derivation of Im{Θs} for a

short orbit is much more complicated than the derivation of Eq. (2.74). The former requires

us to approximate the imaginary part of the recombination time Im{θs} to the order of γ3

rather than simply zero. Nevertheless for long wavelengths it is still reasonable to treat the

electric field as quasi-static at the born time of the short orbit, thus the tunneling ionization

rate Eq. (2.75) remains valid for the short orbits as well. This point has been verified in

Fig. 2.10 which shows that, as the laser wavelength increases, Im{Θs} converges to the
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factor − (2Ip)3/2

3E0 cos θ′c
(solid black curve) for both long and short orbits.

2.2.2 Electron wave packet and scaling law at long wavelengths

Based on Eqs. (2.46)-(2.48), (2.49) and (2.50) one can derive

| det(S ′′)| = E4
0

ω2
L

|G11G22 −G12G21|
|θs − θ′s|2

, (2.76)

where

G11(θ′s, θs) = − (g(θ′s, θs) + sin θs)
2

+ (θs − θ′s) cos θ′s[g(θ′s, θs) + sin θs], (2.77)

G22(θ′s, θs) = − (g(θ′s, θs) + sin θ′s)
2 − (θs − θ′s) cos θ′s[g(θ′s, θs) + sin θ′s], (2.78)

G12(θ′s, θs) = G21(θ′s, θs) = (g(θ′s, θs) + sin θs) (g(θ′s, θs) + sin θ′s) , (2.79)

and

g(θ′s, θs) =
cos θs − cos θ′s

θs − θ′s
. (2.80)

By combining Eqs. (2.53) and (2.54) we get

G11G22 −G12G21

= (g(θ′s, θs) + sin θ′s)(g(θ′s, θs) + sin θs)(θs − θ′s)2 cos θ′s

(
sin θs − sin θ′s

θs − θ′s
− cos θ′s

)
= ±iγ

√
ω̃

2
(θs − θ′s)2 cos θ′s

(
sin θs − sin θ′s

θs − θ′s
− cos θ′s

)
. (2.81)

Thus

| det(S ′′)| = γE4
0

ω2
L

√
ω̃

2
| cos θ′s|

∣∣∣∣sin θs − sin θ′s
θs − θ′s

− cos θ′s

∣∣∣∣ . (2.82)
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Additionally, we notice that from Eqs. (2.40) and (2.41),

|dx(ps + A(t′s))| = |dx(i
√

2Ip)|, (2.83)

|d∗x(ps + A(ts))| = |dx(
√

2(ω − Ip))| = |dx(
√

2ω̃Up)|. (2.84)

Substituting the above results into Eq. (2.44) one can rewrite the harmonic spectrum

from a particular quantum orbit as

|Dxs(ω)|2 ∝ 1

| det(S ′′)|

∣∣∣∣ ωL
θs − θ′s

∣∣∣∣3 |dx(√2ω̃Up)|2E2
0 | cos θ′s|2e

− 2(2Ip)3/2

3E0 cosαs

∝ ω5
L

γE2
0

√
ω̃
|dx(

√
2ω̃Up)|2fs(θ′s, θs)

∝ λ−4ω̃−1/2E−1
0 |dx(

E0

√
2ω̃

4πc
λ)|2fs(θ′s, θs). (2.85)

Here fs(θ
′
s, θs) is a function that depends on (θ′s, θs). Note that here and in the following

we omit the factor |dx(i
√

2Ip)|2, which is a constant for a given target. Since saddle point

solutions (θ′s, θs) relies on ω̃ and γ ∝ λ−1, fs(θ
′
s, θs) can also be treated as a function of ω̃

and λ which reads

Fs(ω̃, λ) = fs(θ
′
s, θs) =

| cos θ′s|e
− 2(2Ip)3/2

3E0 cos(Re{θ′s})∣∣∣ sin θs−sin θ′s
θs−θ′s

− cos θ′s

∣∣∣ |θs − θ′s|3 . (2.86)

Equation (2.85) shows that the wavelength scaling of |Dxs(ω)|2 at a fixed scaled energy

ω̃ depends on the form of dx(p) and thus on the target, as discussed in[111]. Following the

idea of QRS theory[101] we can get rid of the target-dependent transition dipole and only

study the wavelength scaling of the returning electron wave packet. For convenience here

we define the wave packet W (ω) as the HHG yield P (ω) divided by the photorecombination
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cross section σ(ω)

W (ω) ∝ P (ω)

σ(ω)
=

ω4|Dx(ω)|2
4π2ω3

cp
|dx(p)|2

=
c

4π2

ω
√

2(ω − Ip)|Dx(ω)|2

|dx(
√

2(ω − Ip))|2
. (2.87)

Then the electron wave packet of a particular quantum orbit follows (assuming ω � Ip)

Ws(ω̃) ∝
ω̃Up

√
2ω̃Up|Dxs(ω)|2

|dx(
√

2ω̃Up)|2
∝ (ω̃Up)

3/2λ−4ω̃−1/2E−1
0 Fs(ω̃, λ) ∝ λ−1ω̃E2

0Fs(ω̃, λ).

(2.88)

Figure 2.11: Wavelength scaling of the electron wave packet of the long and short orbit in
the first return, at (a) ω̃ = 2.8 (b) ω̃ = 2.0 (c) ω̃ = 1.2. Other parameters are the same as
in Fig. 2.8.

For very long wavelength we can expect that γ → 0 and (θ′s, θs) converges to its classical

counterpart (θ′c, θc), thus Fs(ω̃, λ) will reduce to a wavelength independent factor F̃s(ω̃)
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which reads

F̃s(ω̃) = fs(θ
′
c, θc) =

| cos θ′c|e
− 2(2Ip)3/2

3E0 cos θ′c∣∣∣ sin θc−sin θ′c
θc−θ′c

− cos θ′c

∣∣∣ |θc − θ′c|3 . (2.89)

Therefore in the region of sufficiently long wavelength the electron wave packet follows

Ws(ω̃) ∝ λ−1ω̃E2
0 F̃s(ω̃). (2.90)

Figure 2.11 shows the λ scaling of the electron wave packet for both short and long

quantum orbits at three ω̃ values. From Eq. (2.88), at a fixed scaled energy ω̃, Ws ∝

λ−1Fs(ω̃, λ). For λ . 2.0 µm, the scaling law deviates from λ−1, indicating some dependence

of Fs(ω̃, λ) on λ. From 0.8 µm to 2.0 µm the wave packet drops quickly, especially for the

short orbits at energies ω̃ = 1.2. On the other hand, as the wavelength increases beyond

about 2.4 µm, one can observe a rough λ−1 scaling law for both long and short orbits and

for all ω̃ values. This λ−1 dependence is predicted by Eq. (2.90). This general behavior has

been confirmed by the TDSE calculations for different atoms[98].

Next we study the profile of electron wave packet as a function of ω̃. For convenience, we

define a scaled wave packet as W̃s = λWs. According to Eq. (2.88), W̃s has a λ dependent

profile ω̃Fs(ω̃, λ). As λ increases, Eq. (2.90) predicts that this profile will converge to a

universal form ω̃F̃s(ω̃). The convergence of L1 and S1 wave packets is shown in Fig. 2.12. It

can be shown that the wave packets of higher order quantum orbits also converge in a similar

fashion. One can observe that S1 wave packet converges somewhat slower than L1, which

is consistent with the behavior of ionization time for S1 and L1 orbits [see Fig. 2.8(a)]. The

agreement with the “classical limit” (dot-dashed curve) gets worse near the cutoff. This

is probably due to the influence of the artificial divergence imposed by the saddle-point

approximation. A similar trend has been found in the TDSE results reported in Ref. [98],

where the convergence to a universal limit was found as soon as above λ ≈ 3 µm.

Figure 2.13 shows the factor F̃s(ω̃) for each quantum orbit up to the third return. F̃s(ω̃)

for S1 orbit decreases rapidly from higher plateau to lower plateau, while F̃s(ω̃) for other
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Figure 2.12: The electron wave packet of (a) long orbit and (b) short orbit at different
wavelengths. Other parameters are the same as in Fig. 2.8. Wave packets have been rescaled
by a factor of λ in order to show the convergence. The dot-dashed black curve shows the
factor ω̃F̃s(ω̃).

orbits are relatively more flat. We can deduce that for very long wavelengths L1 is the

dominant orbit to the total wave packet, and higher order returns, especially the S2 orbit,

also have considerable contribution. The role of higher order returns discussed here is in

good agreement with the observation in Refs. [87, 112, 113].

We can also approximately derive the wavelength scaling law at a fixed absolute photon

energy ω in the long wavelength region. For that purpose, we first approximately fit the

factor F̃s(ω̃) as F̃S1(ω̃) ∝ ω̃3.7 for the short orbit and F̃L1(ω̃) ∝ ω̃0.8 for the long orbit, as we

can see in Fig. 2.13. Using Eq. (2.90), we get for the long orbit

WL1(ω) ∝ λ−1ω̃1.8 ∝ λ−1U−1.8
p ∝ λ−4.6, (2.91)
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Figure 2.13: The factor F̃s(ω̃) given in Eq. (2.89) for different quantum orbits up to the
third return.

and for the short orbit

WS1(ω) ∝ λ−1ω̃4.7 ∝ λ−1U−4.7
p ∝ λ−10.4. (2.92)

Note that, by definition Eq. (2.87), at a fixed absolute photon energy ω, the wavelength

scaling of HHG yield Ps(ω) is the same as the scaling of electron wave packet given in

Eqs. (2.91) and (2.92). Since HHG at single atom level is mostly dominated by the long

orbit L1 (see Fig. 2.13), the scaling law for the total HHG yield (from all quantum orbits)

is only slightly different from Eq. (2.91). In fact, the scaling law λ−4.2 was obtained in

Ref. [98] for λ in [3.0 − 6.0] µm. Note that the apparent discrepancy, as compared to the

scaling law of λ−(5−6) reported earlier[87, 88, 111] has been mostly resolved as due to the

different definitions for HHG yield used in these papers as compared to Ref. [98] and the

present dissertation. Indeed, their definition, i.e., HHG yield per unit time, differs from ours

by a factor of T−1
L ∝ λ−1.

The universal wave packet in the long wavelength limit as given by Eqs. (2.89) and (2.90)

and its approximate fitting shown in Fig. 2.13 can be used as simple estimates for realistic
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HHG simulation with mid-infrared lasers. Although the analysis presented here is for a

monochromatic driving laser, it can also be performed, in principle, for the case of short

pulses.

2.3 Macroscopic propagation of long and short quan-

tum orbits

The discussions so far are at single atom level, however to simulate experimental HHG

measurements, propagation of the fundamental and high-harmonic fields in the medium

needs to be considered. It is easy to understand that phase matching condition for different

quantum orbits are quite different[17]. In Fig. 2.14 we separate the contributions from short

orbit (S1), long orbit (L1) and higher return orbits (up to the third) to the macroscopic

HHG yield. We used the induced dipole calculated from the QO method as the source

term in the propagation equation. The HHG yield is defined as the integrated harmonic

field intensity right at the rear face of the gas jet. The 0.8 µm case shown in Fig. 2.14

(a) is well understood: as the gas jet is placed after the laser focus, the short orbit (S1) is

effectively selected, the long orbit only contributes near the cutoff. For longer wavelengths

phase matching becomes more sensitive to experimental setup. Simulations for a typical

setup using a tightly focused 1.6 µm laser beam are shown in Fig 2.14 (b) and (c), with the

gas jet placed at z = 1 mm and 3.5 mm after the laser focus, respectively. For z = 1 mm the

long orbit dominates the HHG yield. Higher order returns contribute mainly below about

50 eV (1.5Up + Ip), which indicates that this contribution comes mostly from the second

return. Good phase matching is achieved in the z = 3.5 mm case, which resembles the 0.8

µm, z = 2 mm case above. Here, the HHG spectrum shows clear harmonic peaks but the

cutoff is somewhat reduced. The short orbit dominates the total yield and there is hardly

any signature from long orbits and higher order returns. Although higher order return

orbits have considerable contribution to single atom harmonics, because they accumulate a
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relatively large phase in the continuum and they are more sensitive to laser intensity, their

net contribution to the macroscopic harmonics becomes negligible after propagation.

Figure 2.14: Macroscopic HHG yield after propagating in an Ar gas jet of 1 mm thick
placed after the laser focus. The laser pulse has a cosine-squared envelope with 30 cycles
total duration, CEP=0. (a) 0.8 µm laser with beam waist 25 µm, the center of the gas jet is
at z = 2 mm where the peak intensity is 2.0× 1014 W/cm2 (Up = 12 eV). (b) 1.6 µm laser
with beam waist 36 µm, the center of the gas jet is at z = 1 mm where the peak intensity
is 1.0 × 1014 W/cm2 (Up = 24 eV). (c) the center of the gas jet is at z = 3.5 mm, other
parameters are the same as in (b).
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2.4 Summary and outlook

In this chapter we examine the wavelength dependence of the HHG yield which serves as

a basis of generating ultra-broadband attosecond pulses covering the water window or even

keV region. The tool used in this chapter is the QO theory, which is derived from the SFA

model with saddle-point approximations on the integral over t and t′. At single-atom level,

the real part of the born and return time calculated from QO theory converge to the classical

born and return time as the driving wavelength increases. At long wavelength limit, the

Keldysh parameter γ � 1, ionization falls into deep tunneling regime, and the imaginary

part of the QO born time is related to the tunneling time for the valence electron to be

released. The returning wave packets as functions of the scaled photon energy corresponding

to a particular quantum orbit also converge to a universal form. The short orbits are

typically weaker than long orbits, especially at lower photon energies, for example, below

2Up + Ip, mainly because the electric field strength at the moment when the short orbit is

ionized is weaker than that at the moment when the long orbit is ionized. At a fixed photon

energy, the wavelength dependence of the HHG yield for the long orbit is λ−4.6 and for the

short orbit λ−10.4. The HHG yield scales unfavorably with increased laser wavelength, and

the situation gets even worse for short orbits.

Considering macroscopic propagation, good phase matching tends to select the short

orbit. Therefore it is very challenging to obtain efficient macroscopic harmonic emission with

long wavelength driving field. Recently it has been demonstrated[114] that by combining

just two or three lasers of different colors, the HHG yields can be enhanced by two or more

orders of magnitude, as compared to the single color one without the increase of the total

pulse energy. The strategy there is to generate a synthesized laser waveform which would

enhance the short orbit contribution at single-atom level.
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Chapter 3

Characterization of isolated

attosecond pulses with FROG-CRAB

The topic in this and the next chapter is retrieving IAPs from photoelectron spectrograms

obtained by XUV plus IR two-color streaking measurements. This chapter focuses on the

widely-used FROG-CRAB method[47] which stems from the FROG method[42]. The latter

is an optical technique and has succeeded in characterizing picosecond or femtosecond laser

pulses. However it is difficult to precisely model the two-color photoionization process when

the IR intensity is strong. The application of FROG-CRAB on photoelectron spectrograms

relies on a few approximations such as the strong field approximation (SFA) and the central

momentum approximation. Therefore, it would be necessary to investigate the accuracy of

the FROG-CRAB.

We start from Section 3.1 on how the IAP is described mathematically, which is definitely

the fundamental of pulse characterization. Then in Section 3.2.1 to 3.2.3 we discuss the

theoretical background of FROG-CRAB including the SFA and the central momentum

approximation. Since the SFA model includes the bound-continuum dipole transition matrix

element, in Section 3.2.2 we present how to calculate this dipole moment using one-electron

model potential in more details. In Section 3.2.3 a photoelectron wave packet is introduced
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which is an important concept and will be used in Chapter 5. Section 3.3.1 shows a few

simulations where the SFA is used to generate spectrograms and the FROG-CRAB is applied

to retrieve the input IAPs. In these simulations the IAPs are centered at a photon energy

of 60 eV. On the other hand, it is known that SFA is not accurate in the low-energy region.

Therefore we carry out another set of simulations using TDSE to generate spectrograms. In

these simulations the input IAPs are centered at 40 eV and 22 eV in photon energy. The

details of such TDSE simulations are shown in Section 3.3.2. The FROG-CRAB can not

only retrieve the input XUV pulse but also the IR pulse. Section 3.3.3 discuss the accuracy

of IR retrieval by FROG-CRAB and present an improved fitting method. In the end this

chapter is summarized in Section 3.4.

3.1 Mathematical description of the IAP

Mathematically, an IAP can be described in the time domain

EXUV (t) =
√
I(t) cos[Ω0t+ φ(t)], (3.1)

or in the frequency domain

ẼXUV (Ω) = U(Ω)eiΦ(Ω). (3.2)

Equations (3.1) and (3.2) are related by Fourier transform

ẼXUV (Ω) =

∫ ∞
−∞

EXUV (t)eiΩtdt, (3.3)

EXUV (t) =
1

2π

∫ ∞
−∞

ẼXUV (Ω)e−iΩtdΩ =
1

π

∫ ∞
0

U(Ω) cos[Ωt− Φ(Ω)]dΩ. (3.4)

In Eq. (3.1) I(t) is the temporal intensity profile from which the pulse duration can be

deduced, φ(t) is a temporal phase including attochirps, Ω0 is the central frequency of the

IAP. In Eq. (3.2) U(Ω) and Φ(Ω) are the spectral amplitude and phase respectively. Since
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EXUV (t) is real, it is obvious that U(−Ω) = U(Ω) and Φ(−Ω) = −Φ(Ω), thus in the

following discussion we usually consider positive Ω only.

The temporal profile of the IAP does not only depend on the spectral amplitude U(Ω)

but also on the spectral phase Φ(Ω). Let us assume U(Ω) takes a simple Gaussian form

U(Ω) = U0e
−2 ln 2

(Ω−Ω0)2

(∆Ω)2 , (3.5)

where its FWHM bandwidth is given by ∆Ω. Consider the simplest phase Φ(Ω) = Φ0 which

is an energy-independent constant, by doing inverse Fourier transform we can obtain the

pulse in time domain

EXUV (t) = E0e
−2 ln 2 t2

(∆t)2 cos(Ω0t− Φ0). (3.6)

Here ∆t is the FWHM duration of the pulse, which satisfies

∆Ω∆t = 4 ln 2. (3.7)

Then we add a linear term to the spectral phase, that is Φ(Ω) = Φ0 + (Ω − Ω0)τ . Easily

one can find that in this case

EXUV (t) = E0e
−2 ln 2

(t−τ)2

(∆t)2 cos(Ω0t− Φ0). (3.8)

Compared to Eq. (3.6), the pulse envelope is delayed by an amount of τ with its shape kept

the same.

Next we consider an important case that the spectral phase has a quadratic term Φ(Ω) =

Φ0 + (Ω−Ω0)τ + β
2
(Ω−Ω0)2. By taking the inverse Fourier transform, in time domain the

pulse will be

EXUV (t) = E0e
−2 ln 2

(t−τ)2

(∆t)2 cos

[
Ω0t+ ξ

2 ln 2

(∆t)2
(t− τ)2 − Φ0 −

1

2
arctan ξ

]
. (3.9)
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Here the FWHM duration ∆t satisfies

∆Ω∆t = 4 ln 2
√

1 + ξ2, (3.10)

and the parameter ξ is determined by

ξ =
β(∆Ω)2

4 ln 2
. (3.11)

From Eq. (3.9) we can see the quadratic term in Φ(Ω) leads to a linear chirp in the time

domain. β or ξ is the evaluation of the amount of attochirp. From Eqs. (3.7) and (3.10)

one can conclude that given the same spectral bandwidth ∆Ω, the transform-limited (TL)

pulse (corresponding to β = 0) has the shortest temporal duration, whereas the duration of

a chirped pulse will expand by a factor of
√

1 + ξ2 compared to the TL pulse.

In general, we can approximate the spectral phase Φ(Ω) in the vicinity of Ω0 by Taylor’s

expansion

Φ(Ω) ≈ Φ(Ω0) +
dΦ

dΩ

∣∣∣∣
Ω0

(Ω− Ω0) +
1

2

d2Φ

dΩ2

∣∣∣∣
Ω0

(Ω− Ω0)2 + ... (3.12)

According to the above discussion, similar to femtosecond laser pulses we can define the

group delay of this attosecond pulse

τG =
d

dΩ
Φ(Ω), (3.13)

and the group delay dispersion (GDD)

β =
dτG
dΩ

=
d2

dΩ2
Φ(Ω). (3.14)
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3.2 Theoretical background of FROG-CRAB

3.2.1 SFA model for XUV plus IR photoionization

To relate the phase information to the streaking spectrogram we need to consider a quantum

mechanical model. The first assumption is that the photoelectron spectra can be calculated

using the SFA model[115]:

S(p, τ) =

∣∣∣∣∣
∫ ∞
−∞

EXUV (t− τ)d(p+ A(t))e−iϕ(p,t)e
i

(
p2

2
+Ip

)
t
dt

∣∣∣∣∣
2

. (3.15)

Here the polarization of the XUV, the IR, and the photoelectrons are all taken along the +z

direction, so all quantities become scalars. A(t) is the vector potential of the IR field. p is

the asymptotic momentum of the photoelectron, and the energy of the electron E = p2/2. τ

is the relative temporal shift between the XUV and IR fields. A positive τ means the XUV

comes after the peak of the IR field. The function ϕ(p, t) is given by

ϕ(p, t) =

∫ ∞
t

[
pA(t′) +

1

2
A2(t′)

]
dt′. (3.16)

As in the case of HHG, the SFA model does not take into account the interactions

between the continuum electron and the ionic core. For high energy photoelectrons this

interaction is not important such that the SFA is a good approximation. On the other

hand, the SFA becomes less accurate when considering low energy photoelectrons.

3.2.2 Single photon transition dipole moment

Equation (3.15) includes the single photon transition dipole, d(p) = 〈pez|z|i〉, where |i〉 is

the initial bound state with the ionization potential Ip. In the standard SFA, the continuum

state |pez〉 is approximated by a plane wave state eipz in the coordinate space. A correct

choice is to use the scattering wave function which is a continuum eigenstate of the field-free
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Hamiltonian with asymptotic momentum pez.

In the single-active-electron (SAE) approximation, consider the field free Hamiltonian

H0 = −1

2
∇2 + V (r) (3.17)

in which the effective potential of the ionic core is modeled by

V (r) = −Zc + a1e
−a2r + a3re

−a4r + a5e
−a6r

r
. (3.18)

Here Zc = 1 is the asymptotic charge seen by the active electron. The coefficients ai are

obtained by fitting the numerical potential calculated from the self-interaction free density

functional theory, which can be found in Ref.[116] for noble gas atoms.

The eigenstates of H0 consist of both bound and continuum part. The ground state

associated to an angular momentum quantum number li and a magnetic quantum number

mi can be written as

〈r|i〉 =
ui(r)

r
Ylimi(θ, ϕ), (3.19)

where r = (r, θ, ϕ) is the position vector and Ylm is a spherical harmonic. The continuum

state with asymptotic energy E = k2/2 and quantum numbers L, M reads

〈r|kLM〉 =
ukL(r)

r
YLM(θ, ϕ). (3.20)

The energy normalized radial wave function ukL(r) has the asymptotic form

lim
r→∞

ukL(r) =

√
2

πk
sin

(
kr +

Zc
k

ln(2kr) + ηL(E)

)
. (3.21)

The partial wave phase shift

ηL(E) = −Lπ
2

+ σL(E) + δL(E), (3.22)
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where σL(E) = arg[Γ(L+ 1− iZc/k)] is the Coulomb phase shift, while δL(E) is the phase

shift due to the short-range part in V (r).

The final photoelectron state with momentum k = (k, θk, ϕk) can be expanded by partial

waves

〈r|k〉 =
∑
L,M

e−iηL(E)Y ∗LM(θk, ϕk)YLM(θ, ϕ)
ukL(r)

r
. (3.23)

This wavefunction behaves asymptotically as the superposition of a plane wave plus an

incoming spherical wave. Specifically for the photoelectron emitted along the z axis, θk = 0,

only the M = 0 part exists,

〈r|kez〉 =
∑
L

e−iηL(E)

√
2L+ 1

4π
YL0(θ, ϕ)

ukL(r)

r
. (3.24)

Then the single photon transition dipole can be calculated using Eqs. (3.19) and (3.24),

d(E) = 〈kez|z|i〉 =
∑
L

√
2L+ 1

4π
eiηL(E)〈ukL|r|ui〉〈YL0| cos θ|Ylimi〉. (3.25)

As a result of the dipole selection rule we can only include the mi = 0 channel for forward

photoelectrons. If the photoionization is from s states (li = 0), the transition dipole involves

the continuum p-wave only

d(E) =

√
1

4π
eiη1(E)〈uk1|r|ui〉. (3.26)

However if the photoionization is from p states (li = 1), the transition dipole involves both

the continuum s-wave and d-wave

d(E) =

√
1

12π

{
eiη0(E)〈uk0|r|ui〉+ 2eiη2(E)〈uk2|r|ui〉

}
. (3.27)

Figure 3.1 gives the single photon transition dipoles from the outermost subshells of Ar
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Figure 3.1: (a) Amplitude and (b) Phase of the single photon transition dipole matrix
element from Ar (3p subshell) and Ne (2p subshell).

and Ne atoms, which are calculated according to Eq. (3.27). The dipole amplitude of Ne

drops monotonically whereas the amplitude of Ar shows a Cooper minimum[117] at E = 26

eV (corresponding photon energy Ω = 42 eV). The origin of this Cooper minimum can be

related to the zero crossing of the d-wave component 〈uk2|r|ui〉. Across the Cooper minimum

the dipole phase of Ar has a significant jump while the phase of Ne behaves smoothly.

3.2.3 Electron wave packet and central momentum approxima-

tion

Consider Eq. (3.15), if the exponential term e−iϕ(p,t) oscillates as a function of t with a period

much shorter than the optical cycle of the laser field, according to Yakovlev et al.[118], the

streaking spectrogram can be approximated by

S(E, τ) ≈
∣∣∣∣∫ ∞
−∞

χ(t− τ)e−iϕ(p,t)eiEtdt

∣∣∣∣2 . (3.28)

The function χ(t) is called the “temporal electron wave packet” which describes the XUV

photoionization process and is related to the energy domain wave packet χ̃(E) by an inverse
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Fourier transform:

χ(t) =
1

2π

∫ ∞
0

χ̃(E)e−iEtdE. (3.29)

First-order perturbation theory of the XUV photoionization predicts that

χ̃(E) = ẼXUV (Ω)d(E), (3.30)

in which Ω = E+Ip is the XUV photon energy. Furthermore, if one assumes ϕ(p, t) depends

on p weakly such that the momentum p in ϕ(p, t) can be replaced by p0, with p0 being the

center of the momentum of photoelectrons, then Eq. (3.28) takes the form

S(E, τ) ≈
∣∣∣∣∫ ∞
−∞

χ(t− τ)G(t)eiEtdt

∣∣∣∣2 , (3.31)

with the “gate” function G(t) = e−iϕ(p0,t) depending on t only. After taking such “cen-

tral momentum approximation”, Eq. (3.31) fits the mathematical form of the standard

FROG equation. Therefore iterative algorithms can be used to simultaneously extract χ(t)

and G(t) from S(E, τ), such as the principal component generalized projection algorithm

(PCGPA)[119] and the least square generalized projection algorithm (LSGPA)[120]. The

latter is used in the present work. From G(t), a vector potential A(t) of the IR field can be

calculated from Eq. (3.16) provided p0 is given, then the IR field can be retrieved. If the

amplitude and phase of the atomic dipole d(E) are well known, the XUV pulse EXUV (t) can

be deduced from the extracted wave packet χ̃(E) according to Eq. (3.30). These methods

are usually called FROG-CRAB[47] in general.

Moreover, note that the FROG-CRAB method cannot determine the absolute time t.

In other words, the output of the FROG-CRAB could be χ(t− t0) and G(t− t0) where t0 is

arbitrary. Equivalently, such uncertainty would add a linear term Ωt0 to the spectral phase

argχ̃(Ω).
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3.3 Simulations and results

3.3.1 SFA simulations for high energy photoelectrons

Figure 3.2 gives two examples of characterizing IAPs from Ne spectrograms that come from

SFA simulation using Eq. (3.15). The two IAPs share the same U(Ω) with Ω0 = 60 eV

and ∆Ω = 23 eV, but have different Φ(Ω). The first IAP is TL which has a duration of

80 as while the second IAP has an attochirp such that its duration is increased to 130 as.

The IR field in these simulations is 800 nm in wavelength, cosine-squared envelope, 8.8 fs

in FWHM duration and 1013 W/cm2 in peak intensity. Figures 3.2(a) and (b) demonstrate

clearly that the streaking spectrogram is sensitive to the XUV spectral phase. Then by

using the LSGPA FROG-CRAB we can retrieve the spectral amplitude and phase as well

as the temporal profile of the two input IAPs successfully. The comparison between the

input and retrieved pulses are given in Figs. 3.2(c),(d) and (e). In the IAP characterization

we have divided the output of FROG-CRAB χ̃(E) by the known atomic dipole d(E) of Ne.

According to Eq.(3.30), ẼXUV (Ω) = χ̃(E)/d(E). Additionally, to get rid of the uncertainty

of the absolute time in the FROG output, we have moved the peak of all IAPs to t = 0,

and their Φ(Ω) have been readjusted by adding a linear term consistently.

3.3.2 TDSE simulations for low energy photoelectrons

In Fig. 3.2, the electron spectrogram was obtained using the SFA theory, thus the retrieved

results support that the FROG-CRAB method works accurately in spite of the central

momentum approximation and the iterative method. The SFA is expected to work better for

high-energy photoelectrons which was the case for Fig. 3.2. At lower photoelectron energies

(or photon energies) the SFA model is known to be inaccurate for describing the electron

spectra. As a test, FROG-CRAB is used to retrieve IAPs from streaking spectrograms

obtained by solving SAE TDSE. The discrete variable representation (DVR) basis set is used

in the computation[121, 122], and the one-electron model potential is given in Eq. (3.18).

67



Figure 3.2: Characterizing IAPs from Ne spectrograms generated using SFA model. The
two input IAPs have Ω0 = 60 eV, ∆Ω = 23 eV, 80 as duration for the TL pulse and 130
as duration for the chirped pulse. The IR field is 800 nm in wavelength, 8.8 fs in FWHM
duration and 1013 W/cm2 in peak intensity. (a) SFA spectrogram for the TL pulse. (b) SFA
spectrogram for the chirped pulse. Comparison of input XUV pulses with the retrieved ones:
(c) Spectral amplitude (d) spectral phase (e) temporal profile of the input IAPs (dashed lines)
and FROG-CRAB retrieved IAPs (solid lines).
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In Fig. 3.3 the IAPs have Ω0 = 40 eV, ∆Ω = 11.5 eV and the target is Ne. In Fig. 3.4

the IAPs have even lower photon energy Ω0 = 22 eV, ∆Ω = 5.9 eV and the target is

Kr. Figures 3.3(a) and (b) give the comparison between TDSE and SFA spectrograms and

therefore show the effect of electron-ion interaction for photoelectrons below 30 eV. Fig

3.3(c) shows U(Ω) can still be accurately retrieved by FROG-CRAB. However the retrieved

spectral phase Φ(Ω) has a greater chirp than the input one for both the TL and chirped

IAPs, as shown in Fig 3.3(d). Due to the overestimation of attochirp, the retrieved pulse

duration becomes 165 as compared to the input 160 as for the TL pulse, and 225 as compared

to the input 210 as for the chirped pulse. Similarly, for the cases using Ω0 = 22 eV IAPs,

the FROG-CRAB retrieved pulses have longer durations than the input ones. Figure 3.4 (b)

shows the comparison between the input and retrieved spectral phase. The results about

IAP temporal profile are given in Fig. 3.4 (c). In conclusion, due to the inaccuracy of the

SFA model in the low energy region, errors become larger when FROG-CRAB is applied to

low-energy electron spectrograms. Up to 10% errors in pulse duration will be introduced if

one uses FROG-CRAB to characterize IAPs with photon energies below 40 eV. Since most

of the errors occur at the wings of the pulse which have weaker intensity, the error may not

be too severe.

3.3.3 Retrieval of IR field

The FROG-CRAB can also extract the IR field as mentioned before. For the TL spectrogram

Fig. 3.2(a), we show the comparison between the input EIR(t) and the one coming from

FROG-CRAB output in Fig. 3.5. Although the FROG-CRAB result appears to be in good

agreement with the input IR in Fig. 3.5(a), the agreement on the attosecond time scale

shows its deficiency, according to the zoom-in plot Fig. 3.5(b) where the IR peak position

was off by more than 100 as. Here we can compare IR peak positions because t = 0 has

been determined by the IAP. To improve the accuracy of IR retrieval, we applied a fitting

approach based on the known d(E) and the extracted EXUV (t). The IR field were modeled
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Figure 3.3: Characterizing IAPs from Ne spectrograms obtained by solving TDSE. The two
input IAPs have Ω0 = 40 eV, ∆Ω = 11.5 eV, 160 as duration for the TL pulse and 210
as duration for the chirped pulse. The IR field is 800 nm in wavelength, 4.4 fs in FWHM
duration and 1013 W/cm2 in peak intensity. (a) TDSE spectrogram for the TL pulse. (b)
SFA spectrogram for the TL pulse in comparison. (c) Spectral amplitude (d) spectral phase
(e) temporal profile of the input IAPs (dashed lines) and FROG-CRAB retrieved IAPs (solid
lines).
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Figure 3.4: Characterizing IAPs from Kr spectrograms obtained by solving TDSE. The
two input IAPs have Ω0 = 22 eV, ∆Ω = 5.9 eV, 310 as duration for the TL pulse and
392 as duration for the chirped pulse. The IR field is 800 nm in wavelength, 4.4 fs in
FWHM duration and 1012 W/cm2 in peak intensity. (a) TDSE spectrogram for the TL
pulse. (b) Spectral phase (c) temporal profile of the input IAPs (dashed lines) and FROG-
CRAB retrieved IAPs (solid lines).

Figure 3.5: Retrieved IR field from the Ne spectrogram Fig. 3.2(a) with a TL IAP. (a)
(Solid black line): The retrieved IR through GA fitting. (Dot-dashed blue line): The output
IR field from the FROG-CRAB by setting p0 = 1.68. (Dashed red line): The input IR field.
(b) A zoom-in plot of (a) near t = 0. From [123].
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by

EIR(t) = f(t) cos[ωL(t−∆)]. (3.32)

The envelope f(t) was constructed by a set of samples (ti, fi) through cubic-spline interpo-

lation. The horizontal coordinates ti were fixed while the vertical coordinates fi as well as

∆ were set as fitting parameters. Then we used Eq. (3.15) to generate trial spectrograms

and applied the Genetic algorithm (GA) to find the optimal parameters by minimizing

the error between the input and the trial spectrograms. In Fig. 3.5(b) the peak of the IR

field extracted via fitting is off by only about 2 as, which is the benefit of including the

additional fitting procedure. Note that the fitting approach is based on the SFA equation

directly, therefore, it does not apply the central momentum approximation that limits the

performance of FROG-CRAB.

3.4 Summary

In this chapter we check the accuracy of FROG-CRAB on pulse retrieval by simulating the

spectrogram using known input XUV and IR pulses. For high-energy electrons where the

photon energy of the IAP is centered at 60 eV, SFA is supposed to be accurate enough to

describe the spectrogram. By applying FROG-CRAB to the SFA-simulated spectrograms,

both the TL and chirped input IAP can be successfully retrieved. These examples show

that FROG-CRAB works accurately in spite of the central momentum approximation and

the iterative method. However, it was demonstrated that the central momentum approxi-

mation will break down when the IAP bandwidth is quite comparable to the central energy

of photoelectrons[48]. For low-energy electrons, SFA is not accurate any more to calculate

the spectrograms. TDSE is solved numerically instead of SFA to generate the spectrograms.

The retrieved IAPs via FROG-CRAB contain up to 10% errors in pulse duration compared

with the input pulses. These results show that the IAP extracted via FROG-CRAB is still

acceptable although the spectrogram calculated from SFA does not reproduce the spectro-
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gram calculated using TDSE. For the IR pulse retrieval, the IR extracted by FROG-CRAB

is good in femtosecond time scale but not in attosecond time scale. The accuracy can be

improved by a fitting method without the central momentum approximation.
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Chapter 4

Characterization of isolated

attosecond pulses with PROOF

The FROG-CRAB is limited by the SFA and the central momentum approximations on

which this method is based. To overcome such limitations another pulse retrieve method

called PROOF was proposed[48]. This method is actually based on second-order perturba-

tion theory instead of SFA model, so it would be more accurate from theoretical point of

view so long as the IR intensity is within the perturbative regime. However, the original

derivation of PROOF in Ref. [48] is quite primitive such that it totally ignores the atomic

transition dipoles in the photoionization process. In this chapter we give a systematic deriva-

tion of the PROOF method based on the second-order perturbation theory including the

accurate two-photon transition matrix elements. We refer the PROOF method that de-

rived from perturbation theory without any further approximations as the “scattering wave

PROOF (swPROOF)” compared with the original PROOF given in Ref. [48]. Furthermore,

we compare the accuracy of the swPROOF and the original PROOF in characterizing IAPs,

which can serve as a benchmark of accurate spectral phase retrieval. The materials in this

chapter are adapted from the publication [124].

Section 4.1.1 is the formulation of the streaking spectrogram based on second-order

74



perturbation theory. From the derivations we introduce the first-second-order interference

(FSI) term which plays an important role in spectral phase retrieval. Second-order per-

turbation theory includes the two-photon transition dipole matrix element, so in Section

4.1.2 we mention how to accurately calculate this quantity. In Section 4.1.3 we introduce

additional approximations and recover the original PROOF method. Then we solve TDSE

numerically to calculate photoelectron spectrograms and use them as the input of pulse

retrieval. In Section 4.2.1 we compare the FSI term extracted from the TDSE spectro-

gram with the one computed from analytical equations corresponding to swPROOF and

PROOF. The difference between simulation and theory implies the accuracy of such phase

retrieval method. The main results are presented in Section 4.2.2, where we compare the

spectral phase and temporal intensity profile of the input IAP and the retrieved ones via

swPROOF and PROOF. The effect of IR intensity on pulse retrieval is discussed in Section

4.2.3. Finally we conclude this chapter in Section 4.3.

4.1 Formulations of the PROOF method

4.1.1 First-second-order interference term in photoelectron spec-

tra

Assume the IR intensity is weak so that we can neglect the ionization path that involves more

than one IR photon. Therefore second-order perturbation theory can be applied to model

the streaking spectrogram, as in the RABITT method for APT characterization. However

in RABITT case the sideband cannot be directly reached by the XUV but results from

interference between two XUV+IR paths, while the direct XUV ionization must be included

in the characterization of IAP. Consider photoelectrons measured along the polarization

axis of the XUV and IR (chosen to be the +z direction), and we model the IR field as

monochromatic which is an approximation of a multi-cycle field that has a slowly varying
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envelope. The streaking spectrogram can be modeled by

S(E, τ) =

∣∣∣∣ẼXUV (Ω)d(E) + ẼXUV (Ω− ω)
EIR

2
e−iωτd(+)(E)

+ẼXUV (Ω + ω)
EIR

2
eiωτd(−)(E) + o(E2

IR)

∣∣∣∣2 . (4.1)

Here E = k2/2 is the photoelectron energy, Ω = E + Ip is the XUV photon energy, ω is

the IR frequency, EIR is the IR field strength. ẼXUV (Ω) is the XUV field in the frequency

domain, as discussed in Section 3.1. τ is the temporal shift between the XUV and IR fields.

A positive τ means the XUV comes after the peak of the IR field.

The first term in the right-hand-side of Eq. (4.1) describes the process that the electron

initially at ground state absorbs one XUV photon Ω and transits to continuum state with

energy E. The second term corresponds to the path that the electron first absorbs one XUV

photon Ω − ω and then absorbs one IR photon ω, while the third term corresponds to the

path that the electron first absorbs one XUV photon Ω+ω and then emits one IR photon ω.

The term o(E2
IR) includes contributions from higher order paths involving two or more IR

photons. The total spectrogram is the modulus square of the coherent superposition of all

possible quantum paths that lead to a final state with energy E. Since ω � Ip for noble gas

atoms, contribution from the path that the electron first absorbs (or emits) one IR photon

and then one XUV photon is negligible[125]. Therefore in the present work we only include

paths that the electron absorbs one XUV photon first.

The single photon transition dipole d(E) = 〈kez|z|i〉 has been given in Eq. (3.25) if a

one-electron model potential is used. The XUV+IR two-photon transition dipole matrix

element d(±)(E) is given by

d(±)(E) = lim
ε→0

∑
αλm

〈kez|z|αλm〉〈αλm|z|i〉
E∓ − Eα + iε

. (4.2)

Here d(+) corresponds to the path that absorbs one IR photon, and d(−) to the path that
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emits one IR photon. E∓ = E ∓ ω are the energies of the virtual intermediate states.

The summation in Eq. (4.2) includes all the eigenstates |αλm〉 of the field-free Hamiltonian

in spherical coordinates, both bound and continuum. Since E∓ falls in the continuum

spectrum additional treatments when Eα is close to E∓ are needed. We will show the

details of evaluating the two-photon transition dipole in the next subsection.

Back to Eq. (4.1), we can expand it by the order of EIR:

S(E, τ) = SXUV (E) + SFSI(E, τ) + o(E2
IR). (4.3)

Here, SXUV (E) = |U(Ω)|2|d(E)|2 is the IR-free XUV-only photoelectron spectrum which

contains no phase information. What we are interested in is the FSI term which is propor-

tional to EIR:

SFSI(E, τ) = EIRRe
{
ẼXUV (Ω)Ẽ∗XUV (Ω− ω)eiωτd(E)d(+)∗(E)

+ẼXUV (Ω)Ẽ∗XUV (Ω + ω)e−iωτd(E)d(−)∗(E)
}

= EIRU(Ω)|d(E)|
{
U(Ω− ω)|d(+)(E)| cos(ωτ + ∆+(E))

+U(Ω + ω)|d(−)(E)| cos(ωτ + ∆−(E))
}

(4.4)

The phases ∆+ and ∆− depend on the spectral phase Φ(Ω) and the phase of dipole matrix

elements:

∆+(E) = Φ(Ω)− Φ(Ω− ω) + arg[d(E)]− arg[d(+)(E)], (4.5)

∆−(E) = Φ(Ω + ω)− Φ(Ω)− arg[d(E)] + arg[d(−)(E)]. (4.6)

Equation (4.4) implies that the FSI term is a superposition of two oscillating terms: one

comes from the interference between the direct and the IR-absorption path, the other comes

from the interference between the direct and the IR-emission path. For a given electron

energy E the FSI term oscillates as a function of τ at the IR frequency ω. Equation (4.4)
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can be rewritten as

SFSI(E, τ) = A(E) cos(ωτ + Ψ(E)), (4.7)

with the amplitude A(E) and phase Ψ(E) given by

A(E) = EIRU(Ω)|d(E)|
{
|U(Ω− ω)|2|d(+)(E)|2 + |U(Ω + ω)|2|d(−)(E)|2

+2U(Ω− ω)U(Ω + ω)|d(+)(E)||d(−)(E)| cos(∆+(E)−∆−(E))
}1/2

, (4.8)

Ψ(E) = tan−1

(
U(Ω− ω)|d(+)(E)| sin ∆+(E) + U(Ω + ω)|d(−)(E)| sin ∆−(E)

U(Ω− ω)|d(+)(E)| cos ∆+(E) + U(Ω + ω)|d(−)(E)| cos ∆−(E)

)
. (4.9)

In practice, one cannot decompose the experimental spectrogram into perturbation series

by the order of EIR. Instead, one can apply Fourier analysis to separate different oscillating

frequency components

S(E, τ) = S0(E) + Sω(E, τ) + S2ω(E, τ) + . . . . (4.10)

Here S0(E) = SXUV +o(E2
IR) is a D.C. term that is independent of τ , Sω(E, τ) = SFSI(E, τ)+

o(E3
IR) oscillates with τ at the frequency ω, and S2ω(E, τ) ∼ o(E2

IR) oscillates with τ at

the frequency 2ω. When the IR intensity is weak, S0 ≈ SXUV , Sω ≈ SFSI , and high fre-

quency components are negligible. Therefore the FSI term can be obtained by applying

a filter on the measured spectrogram and then selecting its omega component. Suppose

the spectral magnitude U(Ω) and the transition matrix elements d(E), d(+)(E) and d(−)(E)

are already known, the spectral phase can be retrieved by fitting the FSI amplitude A(E)

and phase Ψ(E) according to Eqs. (4.8) and (4.9). This procedure forms the basis of the

PROOF (phase retrieval by omega oscillation filtering) method[48]. Note that in the case of

IAP, S2ω is due to the interference not only between the two XUV+IR paths (absorbing or

emitting one IR photon respectively) as in the RABITT case, but also between the direct

(XUV-only) path and the XUV+IR+IR path (absorbing or emitting two IR photons). In

either case there is a contribution proportional to E2
IR.
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4.1.2 Two-photon transition dipole matrix elements

To evaluate the two photon transition dipole d(±)(E), one needs to expand the final contin-

uum state into partial waves according to Eq. (3.24), then separate Eq. (4.2) by radial and

angular parts, that is

d(±)(E) =
∑
L,λ

√
2L+ 1

4π
eiηL(E)〈YL0| cos θ|Yλ0〉〈Yλ0| cos θ|Yli0〉WL,λ(E,E∓). (4.11)

Here the initial state has a well-defined angular momentum number li, λ and L are the

angular momentum quantum numbers of the intermediate and the final partial wave of the

photoelectron, respectively. According to the dipole selection rule, λ = li ± 1, L = λ ± 1.

The term WL,λ is a two-photon radial matrix element:

WL,λ(E,E∓) = lim
ε→0

∑
Eα

〈ukL|r|uEαλ〉〈uEαλ|r|ui〉
E∓ − Eα + iε

. (4.12)

ukL(r) is the energy normalized radial wave function with angular momentum quantum

number L and ηL(E) is the corresponding phase shift, see Eqs. (3.21) and (3.22).

For example, if the ground state has s-symmetry (li = 0), the two-photon dipole consists

of two paths s→ p→ s and s→ p→ d:

d(±)(E) =

√
1

36π
{eiη0(E)W0,1(E,E∓) + 2eiη2(E)W2,1(E,E∓)}. (4.13)

On the other hand, if the ground state has p-symmetry (li = 1), the two-photon dipole

consists of three paths p→ s→ p, p→ d→ p and p→ d→ f :

d(±)(E) =

√
1

12π
{eiη1(E)W1,0(E,E∓) +

4

5
eiη1(E)W1,2(E,E∓) +

6

5
eiη3(E)W3,2(E,E∓)}. (4.14)

The radial matrix element WL,λ in Eq. (4.12) is an infinite sum which is hard to evaluate
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directly. Instead, we introduce the radial Hamiltonian

Hλ = −1

2

d2

dr2
+ V (r) +

λ(λ+ 1)

2r2
, (4.15)

and the intermediate radial wave function ρκ∓λ(r) such that

WL,λ(E,E∓) = 〈ukL|r|ρκ∓λ〉, (4.16)

where κ∓ =
√

2E∓. ρκ∓λ describes the photoelectron after absorbing one XUV photon, and

can be found in the following way:

ρκ∓λ(r) = (lim
ε→0

∑
Eα

|uEαλ〉〈uEαλ|
E∓ − Eα + iε

)rui(r) = (lim
ε→0

1

E∓ −Hλ + iε
)rui(r)

= (℘
1

E∓ −Hλ

− iπδ(E∓ −Hλ))rui(r) = ρ
(R)
κ∓λ
− iπ〈uκ∓λ|r|ui〉uκ∓λ(r).(4.17)

The term with ℘ prescribes the principal value integration that contributes to the real part

of ρκ∓λ (off-shell part). The δ term represents the Dirac delta function that contributes

to the imaginary part of ρκ∓λ (on-shell part). The function ρ
(R)
κ∓λ

(r) is the solution of the

Dalgarno-Lewis differential equation:

(E∓ −Hλ)ρ
(R)
κ∓λ

(r) = rui(r), (4.18)

with the boundary condition ρ
(R)
κ∓λ

(r) = 0 at r = 0. Physical solution of ρκ∓λ(r) requires the

asymptotic behavior[126, 127]

lim
r→∞

ρκ∓λ(r) = −π

√
2

πκ∓
e
i
(
κ∓r+

Zc
κ∓

ln(2κ∓r)+ηλ(E∓)
)
〈uκ∓λ|r|ui〉. (4.19)

In order to fulfill the asymptotic form Eq. (4.19), the physical solution of Eq. (4.18) should

have the smallest asymptotic amplitude[128]. This way to evaluate WL,λ is called Dalgarno-
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Lewis method.

4.1.3 Approximations used in the original PROOF method

If WL,λ is calculated exactly with the Dalgarno-Lewis method, one can obtain the exact

two-photon transition dipoles. Alternatively, if one uses the asymptotic form of ρκ∓λ and

ukL, Eqs. (4.19) and (3.21), to evaluate WL,λ, the approximate result takes the form

WL,λ(E,E∓) ≈ iei{ηλ(E∓)−ηL(E)}〈uκ∓λ|r|ui〉T cc(E,E∓). (4.20)

The term T cc has an analytical form

T cc(E,E∓) = − 1√
kκ∓

(2κ∓)iZc/κ∓

(2k)iZc/k

(
i

κ∓ − k

)2+i(Zc/κ∓−Zc/k)

Γ[2 + i(Zc/κ∓−Zc/k)]. (4.21)

Note that this expression does not depend on the target except for the asymptotic charge

Zc but it does depend on the photoelectron energy. Plugging Eq. (4.20) into Eq. (4.11) we

can obtain the approximate two-photon dipole

d(±)(E) ≈ iT cc(E,E∓)
∑
L,λ

√
2L+ 1

4π
eiηλ(E∓)〈uκ∓λ|r|ui〉〈YL0| cos θ|Yλ0〉〈Yλ0| cos θ|Yli0〉.

(4.22)

By applying dipole selection rules and working out the angular part, one can prove that

d(±)(E) ≈ iT cc(E,E∓)d(E∓). (4.23)

Here d(E∓) is the single photon transition dipole matrix element to the continuum state

with energy E∓. Equation (4.23) implies that the two-photon dipole can be approximately

separated into two parts: the single photon transition dipole to the intermediate state and

a term T cc accounting for the IR induced continuum-continuum (C-C) transition.

Furthermore, if we set Zc = 0 in Eq. (4.21) to turn off the long-range Coulomb potential
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which is consistent with the SFA, then

T cc(E,E∓) ≈ 1√
kκ∓

1

(κ∓ − k)2
. (4.24)

Next we take the soft photon approximation[129, 130], that is to assume ω << E, then

κ∓ =
√

2(E ∓ ω) = k

√
1∓ ω

E
≈ k(1∓ ω

2E
) = k ∓ ω

k
, (4.25)

and therefore

T cc(E,E∓) ≈ 1√
k2 ∓ ω

1

(∓ω
k
)2
≈ k

ω2
. (4.26)

Moreover, we may neglect the atomic term d(E) in the photoionization process since the

goal here is to characterize IAPs. The transition dipoles are approximated by:

d(E) ≈ D, (4.27)

d(±)(E) ≈ i
k

ω2
D, (4.28)

where D is a real constant independent of energy. Using approximations Eqs. (4.27) and

(4.28), we can rewrite Eqs. (4.8) and (4.9) as

A(E) = EIR
kD2

ω2
U(Ω)

{
|U(Ω− ω)|2 + |U(Ω + ω)|2

+2U(Ω− ω)U(Ω + ω) cos(∆+(E)−∆−(E))}1/2 , (4.29)

Ψ(E) = tan−1

(
U(Ω− ω) sin ∆+(E) + U(Ω + ω) sin ∆−(E)

U(Ω− ω) cos ∆+(E) + U(Ω + ω) cos ∆−(E)

)
, (4.30)

and the phase ∆± now becomes

∆+(E) = Φ(Ω)− Φ(Ω− ω)− π

2
, (4.31)
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∆−(E) = Φ(Ω + ω)− Φ(Ω) +
π

2
. (4.32)

Equations (4.29) to (4.32) form the basis of the original PROOF method proposed by

Chini et al.[48]. If one uses the approximation Eq. (4.23) but without Eqs. (4.27) and

(4.28), the method is named by “iPROOF”[131]. Consequently, we refer the method using

the accurate transition dipole matrix elements as the swPROOF[124]. For simplicity, we

only consider the swPROOF and the original PROOF methods in the following discussion.

Comparing Eqs. (4.5), (4.6) and (4.31), (4.32), we can define the atomic phase ψ±(E)

such that

∆+(E) = Φ(Ω)− Φ(Ω− ω) + ψ+(E)− π

2
, (4.33)

∆−(E) = Φ(Ω + ω)− Φ(Ω) + ψ−(E) +
π

2
. (4.34)

Obviously ψ±(E) = 0 in the case of original PROOF. For swPROOF, the exact atomic

phase is given by

ψ+(E) = arg[d(E)]− arg[d(+)(E)] +
π

2
, (4.35)

ψ−(E) = arg[d(−)(E)]− arg[d(E)]− π

2
. (4.36)

We have calculated the exact dipole matrix elements for Ar target at ω = 1.55 eV.

Figure 4.1 plots the amplitude of the exact single and two photon transition dipoles, as well

as the approximated values corresponding to original PROOF. Here we choose D = 0.06 to

minimize the difference between swPROOF and PROOF. Clearly the error of the PROOF

method mainly lies in low energy regions of E < 40 eV.

Figure 4.2 shows the exact atomic phase ψ+(E) and ψ−(E) for the swPROOF method.

They are all negative and quite close to each other. Each phase has a sharp valley near

the Cooper minimum. For the energy region E > 40 eV, |ψ±(E)| < 0.02π so it would be

reasonable to neglect the atomic phase as PROOF does. From Eqs. (4.33) and (4.34) one

can deduce that as long as ω is small and the spectral phase Φ(Ω) changes smoothly over a

broad frequency range, ∆+ and ∆− roughly differ by π. Then the two interference terms in
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Figure 4.1: Amplitude of the (a) Single photon and (b) two photon transition dipole matrix
elements for Ar target. Solid lines are the exact quantities used in swPROOF, while dash-
dotted lines are the approximated quantities in PROOF. The IR photon energy ω = 1.55
eV.

Figure 4.2: The atomic phase ψ± for both swPROOF and PROOF methods.
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Eq. (4.4) tend to be out of phase, and the FSI term is actually a result of strong cancelation

between these two oscillating terms.

4.2 Simulations and results

4.2.1 Comparison of FSI terms between TDSE and the theory

We simulate the XUV+IR spectra for argon by solving the single active electron TDSE

numerically. An 800 nm IR pulse with peak intensity 1011 W/cm2 is used in this simulation

which mimics the typical experimental condition. To reduce the computational load we limit

ourselves to a relative short IR pulse (8.8 fs in FWHM) with a cosine-squared envelope. The

box size and number of grid points were chosen to ensure convergence. Figure 4.3(a),(b) and

(c) shows the spectral amplitude, phase and temporal intensity profile of an XUV pulse used

in the simulation. The pulse has a Gaussian amplitude with a central frequency of Ω0 = 60

eV and a bandwidth of ∆Ω = 22 eV, which would correspond to a FWHM duration of 83 as

for a TL pulse. However this pulse has a chirped phase such that in the time domain its real

duration is 130 as and its shape is not Gaussian any more. Figure 4.3(d) is the spectrogram

generated by this XUV pulse. A positive τ means the XUV comes after the IR pulse.

Figure 4.4 shows the magnitude of the three Fourier components filtered from the spec-

trogram Fig. 4.3(d). Clearly the D.C. component S0 is almost identical to the IR-free

XUV-only spectra SXUV . Our interest lies in the ω-component Sω which can be treated as

the FSI term. This part varies as the XUV phase changes, however it is about one order

of magnitude smaller than the D.C. part. The 2ω-component S2ω is one order smaller than

the FSI term therefore can be neglected.

The FSI amplitude A(E) and phase Ψ(E) (see Eq. (4.7)) can be either extracted from the

TDSE spectrogram or calculated from the known U(Ω), Φ(Ω) and relevant matrix elements

for the PROOF and swPROOF methods via Eqs. (4.8) and(4.9). Figure 4.5(a) and (b) shows

the comparison of such results. A(E) shows a valley and Ψ(E) shows a large phase jump
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Figure 4.3: (a) Spectral amplitude (b) spectral phase and (c) intensity profile of the XUV
pulse used in the TDSE simulation. (d) the computed spectrogram.

Figure 4.4: Magnitude of the Fourier component S0 (top solid line), Sω (middle dot-dashed
line) and S2ω (bottom dot-dashed line) filtered from Fig. 4.3(d), the TDSE result of the IR-
free spectra SXUV (top dashed line) is also plotted.
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around the central energy E0 = Ω0 − Ip ≈ 44 eV. The overall agreement in Ψ(E) is better

than in A(E), and the TDSE result is well reproduced by the swPROOF method where the

atomic matrix elements are calculated using the Dalgarno-Lewis method. The remaining

discrepancies between swPROOF and TDSE might result from the finite duration of the IR

pulse used in the TDSE simulation, as opposed to a monochromatic wave assumed in the

theoretical model. On the other hand, A(E) and Ψ(E) given by the PROOF method shows

noticeable error, especially in the low energy region, which demonstrates the limitation of

the approximation Eqs. (4.27) and (4.28). The quantities A(E) cos Ψ(E) and A(E) sin Ψ(E)

are also given in Fig. 4.5(c) and (d) respectively. One can see that A(E) cos Ψ(E) is roughly

one fifth of A(E) sin Ψ(E) in magnitude. Note that A(E) and Ψ(E) are not affected by the

CEP of the XUV pulse.

Figure 4.5: (a) A(E) (b) Ψ(E) (c) A(E) cos Ψ(E) (d) A(E) sin Ψ(E) extracted from the
TDSE spectrogram Fig. 4.3(d) (red solid line) and calculated from the actual XUV pulse and
the atomic matrix elements in swPROOF (black dashed line) and PROOF (green dashed
line).
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4.2.2 Accuracy of spectral phase retrieval for IAPs

Except for the XUV pulse shown in Fig. 4.3, three extra pulses were used to generate TDSE

spectrograms. All the four pulses (in cases 1-4) have the same spectral amplitude but

different phase, resulting in different temporal profiles. The swPROOF and PROOF were

applied on these spectrograms to characterize the input IAPs. In order to retrieve Φ(Ω) we

parametrize it into

Φguess(Ω) =
4∑

n=1

an(Ω− Ω0)n. (4.37)

Here we always set Φguess(Ω0) = 0 at the central frequency, because the absolute phase

cannot be retrieved. From Φguess(Ω) as well as the known U(Ω) and atomic matrix elements

one can calculate Aguess(E) and Ψguess(E) using Eqs. (4.8) and (4.9). The optimal solution

is the one which minimizes the error

Q =

∫ {
[ATDSE(E) cos ΨTDSE(E)− Aguess(E) cos Ψguess(E)]2

+[ATDSE(E) sin ΨTDSE(E)− Aguess(E) sin Ψguess(E)]2
}
dE. (4.38)

This optimization can be done via the genetic algorithm (GA). In the simulation the IR

intensity is 1011 W/cm2, but in the retrieval we assume this intensity is unknown. Therefore

the coefficients an in Eq. (4.37) as well as EIR are chosen as fitting parameters.

The comparison between the input and retrieved spectral phase for the four IAPs is

given in Fig. 4.6. The corresponding results for the temporal profile are given in Fig. 4.7

and Table 4.1. We can conclude that the swPROOF is more accurate and robust than

PROOF, as expected. Although the pulse duration retrieved by PROOF is acceptable in

case 2 and case 4, it has relatively large error for case 1 and case 3. These results provide

the benchmark on how accurately the IAP can be characterized in a given experiment for

such a highly idealized “experimental” situation. In our simulation even the pulse retrieved

by swPROOF may have a small error compared to the actual XUV pulse. This error mainly
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Figure 4.6: The input and retrieved spectral phase for the four IAPs (case 1-4), shown in
(a)-(d) respectively. The IR field used in these simulations is 800 nm in wavelength, 8.8 fs
in FWHM duration and 1011 W/cm2 in peak intensity.

Figure 4.7: The input and retrieved normalized temporal intensity profile for the four IAPs
(case 1-4), shown in (a)-(d) respectively.
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results from the finite-duration IR pulse used in the simulation, and it is believed that this

error can be reduced if a longer IR pulse (for example over 20 fs) is used.

Pulse duration (as) Actual swPROOF PROOF

case 1 235 254 270

case 2 130 129 122

case 3 103 100 83

case 4 87 84 88

Table 4.1: The input and retrieved pulse durations for 1011 W/cm2 IR intensity, read from
Fig 4.7.

4.2.3 Effect of the IR intensity on pulse retrieval

As the dressing IR intensity increases, quantum paths involving two or more IR photons will

have more contribution to the total spectrogram. Therefore the omega oscillating component

Sω extracted from the spectrogram starts to deviate from the first-second-order interference

term SFSI as we discussed in Section 4.1.1. Such deviation will impose larger error on

the pulse characterization process. Figure 4.8 and Table 4.2 show the result when the IR

intensity used in the simulation was increased to 1012 W/cm2. At this IR intensity the

swPROOF method can still retrieve the XUV pulse duration successfully with the error less

than 10%. However, Fig. 4.9 and Table 4.3 demonstrate that the swPROOF and PROOF

method break down when the dressing IR intensity increases to 1013 W/cm2.

Pulse duration (as) Actual swPROOF PROOF

case 1 235 227 217

case 2 130 122 121

Table 4.2: The input and retrieved pulse durations for 1012 W/cm2 IR intensity, read from
Fig 4.8.
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Figure 4.8: The input and retrieved intensity profile for (a) case 1 and (b) case 2. The IR
peak intensity in these simulations is 1012 W/cm2.

Figure 4.9: The input and retrieved intensity profile for (a) case 1 and (b) case 2. The IR
peak intensity in these simulations is 1013 W/cm2.

Pulse duration (as) Actual swPROOF PROOF

case 1 235 437 410

case 2 130 516 505

Table 4.3: The input and retrieved pulse durations for 1013 W/cm2 IR intensity, read from
Fig 4.9.
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4.3 Conclusion and outlook

In this chapter we examine the accuracy of the original PROOF method and its extension —

swPROOF. When the dressing IR field is below 1012 W/cm2, the XUV plus IR photoelectron

spectrogram is adequately described by the second-order perturbation theory. To calibrate

the intrinsic accuracy of the retrieval methods, we generated “experimental” spectrograms

with the known IAPs in the known IR dressing field. Adopting the original PROOF method

to retrieve the spectral phases, we established the lack of accuracy of the spectral phases

retrieved, which are then reflected in the errors of pulse duration and shape in the time

domain. In the PROOF method, both first and second-order dipole transition elements

are calculated approximately. These approximations are undesirable and unnecessary since

theoretical tools are available for their accurate evaluations. We obtained accurate two-

photon dipole matrix elements using the so-called Dalgarno-Lewis method. The modified

retrieval method, which we called swPROOF, is based on an accurate theory so long as the

IR intensity is below 1012 W/cm2. Our simulation has proven that the swPROOF method

is more universal and robust than the original PROOF method.

Using real experimental data instead of TDSE simulated data, the accuracy of swPROOF

will be compromised. The accuracy reported in this chapter is to be taken as the best

scenario, as additional “noises” from real experimental data will be added. One drawback

of the (sw)PROOF method is that it is derived for a monochromatic IR field as opposed

to the short IR pulse used in real experiments. Moreover, in the weak IR field, features of

the photoelectron spectra are dominated by the XUV spectral intensity. The spectral phase

enters in the FSI terms which is only a small effect. The main advantage of the swPROOF is

that there is no limitation on the bandwidth of the IAP. On the contrary, due to the central

momentum approximation, FROG-CRAB is not suitable for characterizing IAPs with very

broad bandwidths. However, the spectral phase is expected to show more pronounced effect

at higher IR intensities. Therefore it is still worthwhile to develop new characterization

method that depends on the SFA model but not on the central momentum approximation.
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Two improved version of FROG-CRAB have been reported recently[132, 133].

High-order harmonic spectra in the water-window region and beyond have been gen-

erated with mid-infrared lasers[39, 40]. However there has not been a desirable way to

characterize these pulses so far. The swPROOF method seems to be a possible choice. Un-

fortunately, at higher photon energies, electrons from multiple inner shells are generated.

Helium is the only target that does not have this complication, but its photoionization cross

section is notoriously small. The low signal-to-noise ratio may result in large error in the

retrieved pulses. Clearly, characterization of water window IAPs in the time domain is an

important issue that has to be faced in both theory and experiment.
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Chapter 5

Retrieving atomic dipole phase and

photoionization time delay

The topic of photoionization time delay has generated a great deal of controversy since the

first experiment by Schultze et al.[6] in 2010, where a “time delay” of 21 as was reported

between the ionization from the 2p and 2s shells of Ne. This delay was retrieved from

streaking spectrograms using an IAP which was centered at 106 eV with a FWHM band-

width of 14 eV, and the reconstruction was based on the FROG-CRAB method. A flurry

of theoretical works have been devoted to “get” this number. The retrieved time delay was

first assumed to be the “Wigner delay”[134] as the photoionization process can be regarded

as a half-scattering process. Single-active-electron calculation predicts a Wigner delay dif-

ference between 2p and 2s channels of 4 to 5 attoseconds at 105 eV photon energy[6, 135].

Compared with the measured time delay, it has the same sign but a smaller magnitude.

Electron correlation is then considered in terms of the random phase approximation with

exchange (RPAE) method[136, 137], many-body perturbation theory (MBPT)[138], time-

dependent R-matrix theory[139] and B-spline R-matrix method[140, 141]. Up to now most

of the many-electron calculations that approximately account for electron correlation effects

agree reasonably well with each other, but all the calculated Wigner delay differences are less
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than 10 as. The effects of the strong IR field on the measured time delay was then taken into

account. The contribution from Coulomb-laser-coupling (CLC), which is the interaction of

the IR field with the outgoing electronic wave packet in the long-range Coulomb potential,

was scrutinized[61, 127, 135, 142]. However in the considered energy range, the CLC delay

was only 3 as. Although one can combine the CLC delay and the Wigner delay together,

the theoretical predictions still cannot reproduce the measured value. The influence of unre-

solved shake-up channels was also studied[141]. The potentially strong influence of shake-up

channels could result from the prevalence of near-degenerate states in excited-state manifold

of the residual ion. Consequently the ionic shake-up final state can be strongly polarized

by the probe IR pulse. Therefore an additional time delay due to the dipole-laser coupling

(DLC) may contribute[143]. However, the DLC delay calculated so far tends to increase

rather than decrease the discrepancy to experiment. In a word, what information is actually

encoded in the spectrogram and how it can be retrieved is still a wide open question[61].

To address this question, in this chapter we take a fresh look at the main method of

extracting temporal information from the streaking spectrogram, namely FROG-CRAB. In

Section 3.2.3 we have learned that an electron wave packet can be extracted by FROG-

CRAB. This wave packet is assumed to depend on the XUV pulse as well as the transition

dipole moment. It looks possible to use FROG-CRAB to extract the phase (difference)

of the transition dipole from which the time delay can be derived. Section 5.1 is a brief

introduction to the issue of photoionization time delay, including the Wigner delay, the CLC

delay and a short detour to the time delay measured using RABITT. In Section 5.2 we use the

SFA model to generate photoelectron spectrograms and apply the FROG-CRAB algorithm

to retrieve the time delay between the photoionization from Ne 2p and that from Ne 2s

subshells or the time delay between the ionization from Ar and from Ne. We use different

XUV pulses to generate the spectrogram and check the performance of the FROG-CRAB

method against the XUV chirp or bandwidth. Due to the limitation of FROG-CRAB, in

Section 5.3 we propose a fitting approach to extract the dipole phase and Wigner delay of Ar
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by using Ne as the reference target. In Section 5.4 we investigate the error of the SFA-based

FROG-CRAB method in dipole phase or time delay retrieval when using low-energy TDSE

spectrograms as the input. Finally, in Section 5.5 we summarize and discuss the general

issues of extracting atomic dipole phases using laser-assisted photoionization with IAPs.

The materials in this chapter are adapted from the publication [123].

5.1 Introduction of photoionization time delay

5.1.1 Dipole phase and Wigner delay

Time is a classical parameter, but it is neither a dynamic variable nor an operator in quantum

mechanics. For a wave packet, time normally appears in the phase factor e−iEt. This implies

that time can be related to the phase, or more accurately, to the derivative of phase with

respect to energy. For the problem of short-range potential scattering, Eisenbud, Wigner

and Smith had introduced a time delay (we call it Wigner delay)[134, 144, 145] for a given

partial wave with angular momentum l:

τW (E) = 2
d

dE
δl(E), (5.1)

in which δl is the phase shift of partial wave l due to the short range potential. The

interpretation of this Wigner delay is classical; it can be viewed as the time delay of this

particle after moving through the scattering potential compared to the classical free motion

when the potential is absent. This concept is quite abstract and one cannot measure the

Wigner delay directly.

Now consider photoionization, in which case a photoelectron is released and moves in the

potential of the atomic core. Usually the core is charged so the potential has an asymptotic

Coulomb component. For simplicity let us first assume a neutral core, i.e. photo-detachment

from negative ions, so that we can consider short-range potential only, but we still call this
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process “ionization”. This photoemission is equivalent to a “half-scattering” process. In the

entrance channel the wave function is a bound state instead of a continuum wave. Therefore

the Wigner delay for photoionization becomes

τW (E) =
d

dE
δl(E). (5.2)

To see this more clearly, let us look at the l-component of the continuum photoelectron[146].

The asymptotic form of the outgoing wave packet is

Ψ(r, t) ∝
∫ ∞

0

A(E)Ylm(r̂)
ei[kr+δl(E)−Et]

r
dE. (5.3)

Assuming that a short XUV pulse is applied to ionize this target at t = 0, according to

first-order perturbation theory, A(E) ∝ dli(E)ẼXUV (Ω), where Ω = E + Ip is the XUV

photon energy and dli is a real transition dipole matrix element between the initial bound

state and the final continuum l-wave. Here we take the XUV a transform-limited pulse

so that we can choose A(E) a real quantity. The relation between classical and quantum

descriptions can be established by introducing the “stationary phase condition”. The major

contribution to the integral Eq. (5.3) comes from the “trajectory” that satisfies

d

dE
[kr + δl(E)− Et] = 0. (5.4)

Because k =
√

2E = v, the above equation leads to

r = v[t− d

dE
δl(E)] = v(t− τW ). (5.5)

Therefore from the classical point of view, the photoemission is delayed by an amount of

τW after the pump pulse.

When we measure the photoelectron emission in a particular direction ek relative to the
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light polarization (set to be z direction), the definition of Wigner delay can be generalized

to

τW (E, ek) =
d

dE
argd(E, ek), (5.6)

where d(E, ek) = 〈kek|z|i〉 is the single-photon dipole transition matrix element from the

initial state to a final continuum state with asymptotic momentum kek. In general d(E, ek)

contains the contribution from both l = li−1 and l = li+1 continuum waves, where li is the

angular momentum of the initial state. Only when the initial bound state has s-symmetry

(li = 0), there is a single p-component in the continuum wave, then the Wigner delay returns

to its original definition τW (E) = d
dE
δ1(E). In the following discussion we always consider

the forward photoelectron, i.e. ek = ez, then we simply denote the transition dipole by

d(E).

Next we consider the XUV-photo-detachment in the presence of a synchronized IR field

in which both fields have the same polarization. The vector potential of the IR is A(t).

Classically the photoelectron is released with kinetic momentum p0 by the XUV-photo-

detachment. If the XUV pulse is shifted by a time delay τ compared to the IR peak field,

the detected momentum will be p(τ) = p0 − A(τ) if the XUV-photo-detachment happens

instantaneously. However, because of the Wigner delay discussed above, the photoelectron is

released after the XUV pulse, therefore the detected momentum becomes p(τ) = p0−A(τ +

τW ). This has been verified by TDSE simulations using short-range model potentials and

transform-limited XUV pulses[61, 147]. In their simulation, a time delay can be extracted by

comparing the first moment 〈p〉(τ) of the streaking spectrogram with the IR vector potential

−A(τ). This time delay agrees with the Wigner delay calculated from the transition dipole

phase theoretically.
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5.1.2 Effects of the Coulomb-laser-coupling

Let us take the long-range Coulomb potential into account. For a general neutral atom,

the core potential is comprised of a short-range part and a long-range Coulomb part. The

transition dipole matrix element includes both the Coulomb phase shift σl and the short-

range phase shift δl, as discussed in Section 3.2.2. The Wigner delay can be generalized to

include the Coulomb phase shift:

τW (E) =
d

dE
argd(E) (5.7)

where d(E) is given by Eqs. (3.25)-(3.27). Moreover, those equations for d(E) are valid

only for treating atoms in the single-electron model. In many-electron formulations with

the inclusion of electron correlation, the expressions for the transition dipole are more com-

plicated, especially when the so-called interchannel couplings are included[148]. Even with

the additional complexity, however, the transition dipole for a well-defined continuum pho-

toelectron in a given direction can always be expressed by its dipole amplitude and dipole

phase, and one can still relate the Wigner delay to the energy derivative of the dipole phase.

For XUV+IR streaking measurements, in a classical view, the long-range Coulomb

interaction between the continuum electron and the ionic core will modify the electron

trajectory and then the final momentum. The asymptotic momentum can be written as

p(τ) = p0 −A(τ + τS) with τS being different from the Wigner delay τW . The difference is

often referred to as the Coulomb-laser-coupling (CLC) delay such that:

τS(E) = τW (E) + τCLC(E). (5.8)

Classically one can derive an approximate formula for the CLC delay[61]:

τCLC(E) ≈ Zc
(2E)3/2

[
2− ln

(
2πE

ω

)]
. (5.9)
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Here ω is the frequency of the IR field, and Zc = 1 is the asymptotic charge seen by the

photoelectron. Figure 5.1 plots the CLC delay for ω = 1.55 eV. From Eq. (5.9), one can

see that τCLC(E) is independent of target or IR intensity. In practice, the IR intensity

should be weak enough in order to prevent field ionization and depletion of the system by

the IR field but it should be strong enough to cause easily detectable energy modulations of

the emitted electron. TDSE simulations using transform-limited XUV pulses for different

targets have been done and from the first moment of those spectrograms the streaking time

delays τS have been extracted, which are in good agreement with theoretical calculations

based on Eq. (5.8)[135].

Figure 5.1: The CLC delay according to Eq. (5.9), ω = 1.55 eV, Zc = 1.

Equation (5.8) can be generalized to many-electron atoms with the inclusion of electron

correlation, where the CLC delay is the same as in the single-electron case. Moreover, if the

initial state before photoionization or the final core state after ionization has a permanent

dipole moment, the dipole-laser-coupling mechanism will lead to an additional time delay

τ dLC , therefore Eq. (5.8) should be modified into τS = τW + τCLC + τ dLC [143].
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5.1.3 Time delay in RABITT measurements

In the RABITT measurement one uses XUV harmonics together with a delayed multi-cycle

IR field to ionize target atoms. Usually the same IR field is used as the fundamental field

in high harmonic generation and the dressing field in streaking. The intensities of the

XUV harmonics are too weak to cause nonlinear effects, and thus only cause single photon

ionization processes. Without the dressing IR field the photoelectron spectrum will show

peaks at E = (2q + 1)ωIR − Ip from the odd harmonics. The intensity of the dressing IR is

very low (typically less than 1 TW/cm2). Thus the electron can only absorb or emit one IR

photon, and the whole problem can be treated by second-order perturbation theory. Due

to the existence of the IR field, sidebands at E = 2qω − Ip appear in the photoelectron

spectrum. The sideband electron S2q can be simply explained by two-path interference: it

comes from the electron ionized by (2q−1)ω harmonic followed by absorbing one IR photon,

or ionized by (2q + 1)ω harmonic followed by emitting one IR photon. Mathematically the

sideband can be modeled by

S2q = A2q +B2q cos[2ωτ + (ϕ2q+1 − ϕ2q−1) + ∆ϕatomic2q ]. (5.10)

Here ϕ2q±1 is the phase of the (2q±1)ω harmonic. ∆ϕatomic2q is the atomic phase. For forward

electrons it can be calculated by

∆ϕatomic2q = arg[d(−)(E)]− arg[d(+)(E)], (5.11)

where d(±)(E) is the XUV+IR two-photon transition matrix elements discussed in Section

4.1.2, and E = 2qω − Ip is the photoelectron energy of the sideband S2q. In terms of time

delay, Eq. (5.10) can be rewritten as

S2q = A2q +B2q cos[2ω(τ + te2q + τ (2)(E))]. (5.12)
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Here

te2q =
ϕ2q+1 − ϕ2q−1

2ω
(5.13)

is the group delay of the XUV harmonics.

τ (2)(E) =
arg[d(−)(E)]− arg[d(+)(E)]

2ω
(5.14)

is an intrinsic atomic delay which can be directly measured from the spectrogram so long

as the XUV harmonics is transform-limited.

To relate the two-photon atomic delay τ (2)(E) to the Wigner delay, one should rely on

the approximation Eq. (4.23). By applying this equation τ (2)(E) can be separated into

τ (2)(E) ≈ τ (1)(E) + τ cc(E), (5.15)

in which

τ (1)(E) =
arg[d(E + ω)]− arg[d(E − ω)]

2ω
(5.16)

is a finite difference approximation to the Wigner delay τW (E), and

τ cc(E) =
arg[T cc(E,E + ω)]− arg[T cc(E,E − ω)]

2ω
(5.17)

is an IR-induced C-C delay which is target independent. The term T cc has been given in

Eq. (4.21). All the RABITT-type time delay measurements are based on the separation

Eq. (5.15), which takes a similar form to Eq. (5.8).

Although the C-C delay τ cc(E) in the RABITT case is derived from second-order per-

turbation theory, it is in excellent agreement over a wide range of electron energy with

the CLC delay τCLC(E) introduced in the case of streaking[61]. One key in understanding

this remarkable agreement is the intensity independence of τCLC [see Eq. (5.9)] indicating

that the Coulomb-laser coupling contribution to the time shift is present in both the single-
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photon and multiphoton regimes for the IR field. The IR intensities used in the numerical

simulations of streaking spectrograms in Ref. [61] are within 1011 ∼ 1012 W/cm2 (which is

somewhat too low to get a good streaking spectra) in order to achieve good convergence.

In this IR intensity range the second-order perturbation theory is valid as well.

The limitation of the RABITT-type time delay measurement is that the measured delay

τ (1)(E) is not the real Wigner delay which is defined as the energy derivative of the dipole

phase, but a finite difference of the dipole phase as shown in Eq. (5.16). Therefore if the

dipole phase varies rapidly within 2ω energy range, the measured τ (1) will deviate from the

Wigner delay τW . This may be one of the reasons why the measured time delays do not

agree with the values calculated by theory in the recent reports[62, 63].

5.2 Retrieving time delays using FROG-CRAB

5.2.1 Time delay between the ionization from 2p and 2s subshells

of Ne

The Ne atom has two ionization channels from 2p and 2s subshells with the ionization

potentials 21.56 eV and 48.47 eV respectively. The 2p and 2s photoelectrons are generated

simultaneously in an XUV and a delayed IR field. Following the idea in Eq. (3.28), the total

electron spectrogram can be expressed by

S(E, τ) ≈
∣∣∣∣∫ ∞
−∞

[χ2p(t− τ) + χ2s(t− τ)]e−iϕ(p,t)eiEtdt

∣∣∣∣2
≈

∣∣∣∣∫ ∞
−∞

χ(t− τ)e−iϕ(p0,t)eiEtdt

∣∣∣∣2 . (5.18)

Here we introduce the total wave packet χ(t) = χ2p(t) + χ2s(t) as the sum of the 2p and 2s

wave packets. By applying the FROG-CRAB on the total spectrogram S(E, τ), χ(t) can be

retrieved. If S2p(E, τ) and S2s(E, τ) are well separated in energy, it is possible to distinguish
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χ̃2p(E) and χ̃2s(E) from χ̃(E). Then one can take the difference between the phases of these

two wave packets at the same XUV photon energy Ω, according to Eq. (3.30),

argχ̃2p(Ω)− argχ̃2s(Ω) = argd2p(Ω)− argd2s(Ω). (5.19)

In this way the dipole phase difference between 2p and 2s channels can be obtained by

canceling the XUV spectral phase. The Wigner time delay between 2p and 2s ionization

∆τW2p(2s) is then calculated by taking the energy derivative of this phase difference. Note that

if one applies the FROG algorithm on the 2p and 2s spectrograms individually, the same

temporal axis for the two extracted wave packets cannot be guaranteed, then the obtained

time delay is uncertain.

Figure 5.2: (a) SFA-simulated Ne spectrogram for an 190 as TL XUV pulse. (b) Spec-
trogram for a 280 as chirped XUV. In these simulations the peak of XUV envelope and the
peak of IR field overlap at τ=0. A negative τ means the XUV comes before the IR.

To test how accurately the atomic dipole phase or Wigner delay can be retrieved from

the FROG-CRAB method, we start with the most favorable conditions. We use the SFA

model Eq. (3.15) to simulate spectrograms of Ne atom. We first use an 190 as transform-

limited (TL) XUV pulse. In the energy domain it is centered at Ω0 = 105 eV with a FWHM

(full width at half maximum) bandwidth ∆Ω = 9 eV. Its peak intensity is 8× 1011 W/cm2.

The IR field is 800 nm in wavelength, cosine-squared envelope, 6.2 fs in FWHM duration,
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Figure 5.3: (a) Input dipole amplitude and (b) dipole phase for Ne 2p and 2s ionization
channels.

1012 W/cm2 in peak intensity and 0 degree in CEP. The simulated spectrogram is shown

in Fig. 5.2(a). We also use a 280 as chirped XUV pulse which has the same spectral

amplitude as the TL pulse but a quadratic spectral phase. Figure 5.2(b) is the spectrogram

generated by this chirped XUV. The input amplitude and phase of the transition dipole

matrix elements from 2s and 2p are plotted in Figs. 5.3(a) and (b). They are calculated via

Eqs. (3.26) and (3.27) using the one-electron model potential given in Eq. (3.18).

Figure 5.4: (a) FROG-CRAB retrieved spectral phases of the 2p and 2s wave packets for
the case of TL XUV. (b) Retrieved wave packet phases for the case of chirped XUV.

The phase of the retrieved 2p and 2s photoelectron wave packets as functions of photon

energy Ω are plotted in Fig. 5.4(a) for the cases of TL XUV and Fig. 5.4(b) for chirped XUV.
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The retrieved results come from the FROG-CRAB using LSGPA after 100,000 iterations,

where the RMS (root mean square) deviation between the input and retrieved spectrograms

as well as the retrieved wave packet are observed to converge. For the TL case the retrieved

wave packet phases slightly differ from the input XUV phase, which indicates the effect of

the transition dipoles. For the chirped case the XUV phase is much larger than the dipole

phase. We can see that the retrieved phase of the 2s wave packet has prominent error such

that it does not follow Eq. (3.30) accurately.

Figure 5.5: Retrieved Wigner delay difference ∆τW2p(2s) from both cases compared with the
input data. In frequency domain both XUV pulses are centered at 105 eV with a FWHM
bandwidth of 9 eV.

The Wigner time delay between 2p and 2s ionization ∆τW2p(2s) obtained in both cases

are shown in Fig. 5.5 compared with the input value. The retrieved time delay agree very

well with the input value for the transform-limited XUV pulse. However, for the chirped

pulse, the retrieved time delay varies with photon energy significantly, from -8 as to +18

as within the spectral range of the XUV pulse, as compared to the expected constant from

the input over this spectral range. The large variation of the retrieved time delays over the
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spectral region also makes a single averaged time delay meaningless. In Eq. (5.19) it was

assumed that the retrieved wave packets follow Eq. (3.30) exactly. Otherwise, the error will

be added to the retrieved dipole phase difference and time delay, as demonstrated by the

example here using chirped XUV. This example shows the measured time delay may depend

on the XUV chirp, due to the limited accuracy of the retrieval method. The XUV chirp will

lead to errors of several attoseconds in the retrieved time delay, which is detrimental to the

accurate time delay studies. Therefore nearly transform-limited XUV pulse is required in

time delay measurements. It is also worth noting that a time delay error of 10 as amounts to

a phase error of 0.07 radians within an energy interval of 5 eV. To obtain sub-ten attoseconds

time delay, the retrieved atomic dipole phase from experimental data has to be extremely

accurate. In view of such complications an error of about 10 as from the data of Ref. [6]

is probably not a cause for alarm. The XUV pulse obtained from HHG process always

contains a certain degrees of attochirp. We notice that the spectrogram in Schultze et al.[6]

[Fig. 2A of the cited reference] appears to be generated from a chirped XUV pulse, since it

compares closer to the spectrogram in Fig. 5.2(b) than in Fig. 5.2(a).

5.2.2 Time delay between the ionization from Ar and Ne

In a recent experiment, Sabbar et al.[66] carried out streaking experiments on mixed Ar

and Ne under the same XUV and IR fields. The photoelectrons are obtained in coincidence

with the target ions, thus two spectrograms SAr(E, τ) and SNe(E, τ) ionized from Ar(3p)

and Ne(2p) respectively can be separated. Since running the FROG-CRAB individually

cannot guarantee the same temporal axis for the two extracted wave packets, they patched

the two spectrograms together by shifting one of them upward along the energy axis. Then

similar to the Ne 2p(2s) case the FROG was used to analyze the combined spectrogram.

Since ionized by the same XUV, SNe(E, τ) and SAr(E, τ) are in the similar energy region.

We then shift SAr by an energy Eshift so that the two spectrograms become energetically
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separate. The combined spectrogram can be modeled by

S(E, τ) = SNe(E, τ) + SAr(E − Eshift, τ)

≈
∣∣∣∣∫ ∞
−∞

χNe(t− τ)e−iϕ(p,t)eiEtdt

∣∣∣∣2 +

∣∣∣∣∫ ∞
−∞

χAr(t− τ)e−iϕ(
√
p2−2Eshift,t)ei(E−Eshift)tdt

∣∣∣∣2 .
(5.20)

In the low energy part SNe(E, τ), p is the momentum of the photoelectrons coming from

Ne targets so we can denote pNe = p. In the high energy part SAr(E − Eshift, τ), p =
√

2E

corresponds to the energy after shifting upward, while pAr =
√
p2 − 2Eshift is the right

momentum of the photoelectrons coming from Ar targets. The ranges of the momentum

distributions for pNe and pAr are similar, then we can approximate the two terms e−iϕ(pNe,t)

and e−iϕ(pAr,t) in Eq. (5.20) by a single term e−iϕ(p0,t) with p0 being the central momentum.

Suppose SNe(E, τ) and SAr(E − Eshift, τ) do not overlap, then we have

S(E, τ) ≈
∣∣∣∣∫ ∞
−∞

χ(t− τ)e−iϕ(p0,t)eiEtdt

∣∣∣∣2 . (5.21)

The total wave packet χ(t) = χNe(t) + χAr(t)e
−iEshiftt can be extracted by applying the

FROG-CRAB to this combined spectrogram. Therefore one can distinguish χ̃Ne(E) and

χ̃Ar(E − Eshift) so long as Eshift is big enough to make them separate. By comparing the

Ar and Ne wave packets at the same photon energy Ω, one can then obtain the dipole phase

difference and time delay between the ionization of Ar and Ne. The error of the time delay

retrieved in this way is due to the central momentum approximation. The accuracy of such

approximation depends on the range of pNe or pAr in which the electron flux is significantly

intense. We can roughly estimate the range of momentum ∆p ≈ ∆Ω
p0

+ 2Amax where ∆Ω

is the bandwidth of the XUV pulse, Amax is the maximum value of the vector potential of

the laser field, and the central momentum p0 is determined by the central frequency Ω0 of

the XUV. As ∆Ω increases while Ω0 is fixed, the central momentum approximation will get

worse. One the other hand, given the same ∆Ω, the central momentum approximation will
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work better if Ω0 increases.

To test the accuracy of time delay retrieval by patching two spectrograms together,

we simulate Ar and Ne spectrograms using Eq. (3.15), combine them by shifting the Ar

spectrogram and then use the FROG-CRAB to analyze the entire spectrogram. Figure

5.6(a) is the spectrogram generated using a TL XUV pulse of 160 as duration (FWHM

bandwidth ∆Ω = 11.5 eV), and Fig. 5.6(b) is generated with a TL XUV of 80 as duration

(∆Ω = 23 eV). Both XUV pulses are centered at 60 eV and have the peak intensity of 1012

W/cm2. The IR field is 800 nm in wavelength, cosine-squared envelope, 8.8 fs in FWHM

duration, and 1012 W/cm2 in peak intensity. In Figs. 5.6(a) and (b) the Ar spectrogram has

been multiplied by a factor of 10 and then shifted upward by 60 eV.

Figure 5.6: (a) SFA simulated spectrogram of Ar and Ne using a TL 160 as XUV pulse.
(b) Simulated spectrogram using a TL 80 as XUV pulse. In both cases the Ar spectrogram
has been multiplied by a factor of 10 and shifted upward by 60 eV.

We apply the LSGPA FROG-CRAB to these spectrograms. After 100,000 iterations the

FROG algorithm is verified to achieve converged results. Furthermore we change the energy

shift Eshift to generate new input spectrograms and repeat the FROG-CRAB. Figure 5.7(a)

shows the retrieved time delay ∆τWAr(Ne) using the 160 as XUV compared with the input

value. Since the XUV has a relatively narrow bandwidth, for Eshift ≥ 50 eV the Ne and Ar

spectrograms can be well separated, and the central momentum approximation works quite

well. The retrieved time delay is not sensitive to Eshift and the error is less than 10 as within

109



the FWHM bandwidth of the XUV. However, for the case of the 80 as broadband XUV, the

retrieved results strongly depend on Eshift, as shown in Fig. 5.7(b). When Eshift takes the

value of 50 or 60 eV, it is not big enough to totally separate the Ar and Ne spectrograms,

and the retrieved time delay has an error of more than 20 as. When Eshift = 80 eV, the

two spectrograms are well separated, then the retrieved time delay becomes closer to the

input value. The remnant error comes from the central momentum approximation since

here we use an XUV pulse with a larger ∆Ω. In summary, the FROG-CRAB based time

delay retrieval by patching two spectrograms together is reliable only for narrow band XUV

pulses.

Figure 5.7: FROG-CRAB retrieved Wigner time delay between the ionization of Ar and
Ne ∆τWAr(Ne) for various energy shift Eshift, compared with the input value. (a) Using an

160 as TL XUV, centered at 60 eV with a FWHM bandwidth of 11.5 eV. (b) Using an 80
as TL XUV, centered at 60 eV with a FWHM bandwidth of 23 eV.

5.3 Time delay retrieval through a fitting procedure

for broadband IAPs

We have shown that in order to retrieve the dipole phase difference or time delay successfully

using the FROG-CRAB method, the XUV pulse has to have small attochirp and narrow

bandwidth. The accuracy of the FROG-CRAB is limited by the central momentum ap-
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proximation. Here we propose a different approach to improve the accuracy of time delay

retrieval when using broadband XUV pulses or more intense IR fields. To be more specific,

suppose we have Ar and Ne spectrograms generated under the same XUV and IR field, and

we assume that the dipole amplitude and phase of Ne are known and the dipole amplitude

of Ar is also known (from XUV ionization alone), our goal is to retrieve the Ar dipole phase.

This can be done in three steps. First, the FROG algorithm is used to extract the XUV

pulse from the Ne spectrogram, as demonstrated in Section 3.3.1. Second, we set time zero

at the peak of the XUV envelope and retrieve the IR field by fitting this Ne spectrogram

directly using Eq. (3.15), i.e., without the central momentum approximation, as presented

in Section 3.3.3. Third, since both XUV and IR have been extracted, we then retrieve the

dipole phase of Ar by fitting the Ar spectrogram, again based on Eq. (3.15).

We use the SFA model to simulate both Ar and Ne spectrograms under the same XUV

and IR field. The IR field is 800 nm in wavelength, cosine-squared envelope, 8.8 fs in FWHM

duration, and we increase its peak intensity to 1013 W/cm2. Two XUV pulses are used which

have the same spectral amplitude with a center frequency Ω0 = 60 eV and a bandwidth

∆Ω = 23 eV. The first pulse is transform-limited so that its FWHM duration is 80 as, while

the second pulse is chirped with a duration of 130 as. The input and retrieved XUV pulses

have been given in Figs. 3.2(c)-(e). The next step is the retrieval of the IR field by fitting

the Ne spectrogram using the known Ne dipole and the extracted XUV. For the case of TL

XUV the retrieved IR field has been shown in Fig. 3.5. For the case of chirped XUV, the

IR field was accurately retrieved by this fitting process too.

Now we focus on the third step — using fitting to extract the dipole phase or Wigner

delay of Ar from the Ar spectrogram without the central momentum approximation. Here

we choose to use the micro-GA[149] (genetic algorithm) with the fitness function given by

Q =

∫ ∫ (√
Sinput(E, τ)− β

√
Sfitting(E, τ)

)2

dEdτ, (5.22)

where β is an overall renormalizing factor treated as a fitting parameter. The dipole phase
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argd(E) is constructed by samples (Ei, argdi) through cubic-spline interpolation. In this

case 12 samples are used and the optimal vertical coordinates argdi are obtained by micro-

GA. During this optimization the horizontal coordinates Ei are fixed, but they are not

evenly distributed. We put more samples on the low energy side while fewer on the high

energy side since the dipole phase should change slowly in high energy region. There are

8 individuals in each generation and the results are obtained after 2000 generations. The

retrieved Wigner delay of Ar by fitting for both TL and chirped XUV cases are plotted

in Fig. 5.8. The input τWAr within the FWHM bandwidth of the XUV pulse is accurately

retrieved by this fitting method for the case of transform limited XUV, while errors up to

10 as are observed if the chirped XUV is used. In Section 5.2.2 we have retrieved the delay

difference ∆τWAr(Ne) = τWAr− τWNe by using FROG-CRAB for the case of 80 as TL XUV pulse,

see Fig. 5.7(b). We choose the ∆τWAr(Ne) obtained by setting Eshift = 80 eV and add the

τWNe which is calculated from the input Ne dipole to it, then we can get a τWAr retrieved

from FROG-CRAB method. This result is also plotted in Fig. 5.8 in dot-dashed line to

be compared with the fitting result in solid blue line. Clearly the fitting approach is more

accurate because it gets rid of the central momentum approximation in its second and third

steps. However since the central momentum approximation is still included in the first step

of our new procedure, the errors in the extracted XUV pulses will affect the accuracy of the

retrieved time delay. This effect becomes more prominent when chirped XUV pulses are

used.

From Fig. 3.2(a) and (b) we can see the XUV phase has a strong effect on the spec-

trogram. However the spectrogram is not very sensitive to the dipole phase of the target.

To demonstrate this point, we use two artificial targets which have different dipole phases

from the input Ar target, and generate spectrograms under the same 80 as TL XUV and

the same IR field. Figure 5.9(a) shows the corresponding Wigner delays of the two artificial

targets as well as that of the input Ar. Figures 5.9(b) and (c) are their electron spectra

at two particular delays between the XUV and the IR. Although the Wigner delays can
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Figure 5.8: Wigner delay of Ar. (Solid blue line): Retrieved by fitting for the case of 80
as TL XUV. (Solid green line): Retrieved by fitting for the case of 130 as chirped XUV.
(Dot-dashed black line): Retrieved from FROG-CRAB for the case of 80 as TL XUV, by
choosing Eshift = 80 eV and using the input Ne dipole. (Dashed red line): Input data. In
energy domain the XUV pulses are centered at 60 eV with FWHM bandwidth of 23 eV.

differ by more than 20 as, the electron spectrograms or their sectional plots at fixed delays

are not visually different. This insensitivity of the streaked electron spectra with respect

to the dipole phase makes it challenging to retrieve accurate dipole phase, especially when

the XUV phase has large attochirp so that the effect of the dipole phase becomes more

insignificant.

Figure 5.9: (a) Wigner delays for the two artificial targets compared with the Wigner
delay of the input Ar target. (b) Photoelectron spectra for these targets at τ = 0 fs. (c)
Photoelectron spectra at τ = −0.64 fs.
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To test the robustness of our new approach with respect to noise, we repeat the procedure

above for spectrograms contaminated by random errors. Starting from the Ne and Ar

spectrograms simulated by SFA, we add random noise and treat the new spectrograms

as the input of our retrieval. Here the noise at each data point has a mean-zero normal

distribution with a standard deviation of 5% or 10% of the original value. Figure 5.10

demonstrates that this modified FROG-CRAB fitting method is stable for random errors

up to 10%, therefore it can actually be applied to real experimental data.

Figure 5.10: Wigner delay of Ar retrieved by the fitting approach compared with the input
value. We have added 5% or 10% random errors to the original Ne and Ar spectrograms as
the new input data.

5.4 Time delay retrieval from low-energy photoelec-

tron spectra

The retrieval methods presented in section 5.2 and 5.3 assume that the spectrograms can be

accurately modeled by SFA. However, the SFA equation (3.15) does not take into account the
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interaction between the continuum electron and the ionic core. It is a good approximation

only for high energy photoelectrons with energies higher than 30 or 40 eV. In Fig. 5.11 we

compare low energy spectrograms for Ar calculated by solving SAE TDSE and by using

SFA. The TDSE and SFA spectrograms for Ne have been given in Figs. 3.3(a) and (b).

These spectrograms are generated by a TL XUV pulse which is 160 as in FWHM duration

and 1012 W/cm2 in peak intensity. In the frequency domain the amplitude of this pulse has

a Gaussian shape centered at 40 eV with 11.5 eV FWHM bandwidth. The IR field is 800

nm in wavelength, cosine-squared envelope, 4.4 fs in FWHM duration, and 1013 W/cm2 in

peak intensity. Clearly one can see the error of the SFA model as compared to TDSE results

from these spectrograms.

Figure 5.11: (a) TDSE and (b) SFA simulated low energy electron spectrograms for Ar.

From Section 3.3.2 we know that relatively accurate XUV pulses can be retrieved us-

ing the FROG-CRAB although the SFA model used in the method does not describe the
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spectrogram very accurately. However, the limitation of the SFA model for low energy pho-

toelectrons has a more significant effect on the dipole phase or time delay retrieval. Here we

patch the TDSE simulated Ne and Ar spectrograms Figs. 3.3(a) and 5.11(a) together. The

Ar spectrogram has been multiplied by a factor of 16 and then shifted upward by 60 eV.

FROG-CRAB is then applied to the whole spectrogram and a total electron wave packet is

extracted, from which we separate the Ar and Ne wave packets and compare them at the

same photon energy. Figures 5.12(a) and (b) shows the amplitude and phase of the two

extracted wave packets after 100,000 iterations compared with that of the input XUV pulse.

One can see that the amplitude of the Ar or Ne photoelectron wave packet differs from the

XUV amplitude, which demonstrates the role of the transition dipole amplitude.

Figure 5.12: (a) Amplitude and (b) phase of the retrieved photoelectron wave packets of
Ar and Ne as functions of photon energy Ω, compared with the amplitude and phase of the
input XUV pulse. The wave packets are retrieved using FROG-CRAB from combined Ar
and Ne spectrograms simulated by TDSE.

We then calculate the phase difference between the two electron wave packets and take

derivative of this difference with respect to energy to obtain the photoionization time delay

between Ar and Ne, shown in the solid blue line in Fig. 5.13. The retrieved time delay

can only qualitatively reproduce the input Wigner time delay. Within the XUV FWHM

bandwidth the error can be up to 50 as, and the minimum in the retrieved result shifts by 2

eV compared with that in the input value. According to the assumption Eq. (5.8), we can
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subtract the CLC delay difference τCLCAr(Ne)(Ω) = τCLCAr (Ω)− τCLCNe (Ω) from the FROG-CRAB

retrieved time delay between Ar and Ne, as plotted in the solid green line in Fig. 5.13.

Note that τCLCAr(Ne) is a positive quantity. Even after subtracting the CLC part, the errors

between the retrieved time delay and the input Wigner delay calculated from the dipole

phase corresponding to the model potential cannot be eliminated. On the contrary, if we

combine the two SFA simulated spectrograms Figs. 3.3(b) and 5.11(b) in the same way as

the input of FROG-CRAB, the retrieved time delay agrees with the input value quite well.

Therefore the error in the retrieved time delay from TDSE simulated spectrograms reflects

the deficiency of the SFA model on which the FROG-CRAB method is based.

Figure 5.13: The time delay between the ionization from Ar and Ne. (Solid blue line):
By taking energy derivative of the phase difference between the two retrieved wave packets
in Fig5.12(b). (Solid green line): After subtracting the positive CLC part ∆τCLCAr(Ne)(Ω).

(Dashed red line): Input Wigner delay between Ar and Ne. The input XUV pulse is TL
with a FWHM duration of 160 as. In energy domain it is centered at 40 eV with a FWHM
bandwidth of 11.5 eV.

Additionally, we repeat the micro-GA fitting method presented in section 5.3 for the

TDSE simulated Ne and Ar spectrograms Figs. 3.3(a) and 5.11(a). The XUV pulse retrieved
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from the Ne spectrogram via FROG-CRAB has been shown in Figs. 3.3(c)-(e). The IR field

can also be accurately retrieved from the Ne spectrogram by fitting, although the fitting

method is based on SFA Eq. (3.15). In Fig. 5.14 we plot the photoionization time delay of

Ar retrieved from the Ar spectrogram by GA-fitting in the solid blue line. In this fitting

approach we use the known dipole amplitude of Ar as well as the extracted XUV and IR

field, and the dipole phase was discretized into 10 samples. There are 8 individuals in each

generation and the converged result comes after 2000 generations. We then subtract the

negative CLC delay τCLCAr (Ω) from the fitting result, as plotted in the solid green line in

Fig. 5.14. As a comparison, we also plot the Wigner delay of Ar retrieved by FROG-CRAB

in the dot-dashed black line. This value is obtained by adding the Wigner delay of Ne

calculated from the input Ne dipole on the retrieved ∆τWAr(Ne) given in the solid green line

in Fig. 5.13. One can see in this case the fitting approach is even less reliable than the

FROG-CRAB method. These results again demonstrate the inaccuracy of the SFA model

in the low energy region for the purpose of retrieving the dipole phase or time delay.

5.5 Conclusion

In this chapter, we have examined the controversial time delay issue in recent attosecond

XUV photoionization streaking experiments. We have identified the conditions and demon-

strated how the FROG-CRAB can be used to retrieve the phase of the transition dipole in

such experiment. Due to the insensitivity of the spectrogram to the atomic dipole phase

and due to the central momentum approximation, accurate retrieval of the dipole phase is

difficult unless the XUV is nearly transform-limited and the spectral bandwidth of the XUV

is relatively narrow. Under the most favorable conditions, FROG-CRAB can give the phase

difference between two transition dipoles as a function of the photon energy.

The examples reported in this chapter illustrate that for low-energy photoelectrons (E <

30 eV), due to the inaccuracy of the SFA model, the FROG-CRAB can only retrieve the
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Figure 5.14: Photoionization time delay of Ar (Solid blue line): Retrieved from the Ar
spectrogram simulated by TDSE through GA-fitting. (Solid green line): After subtracting
the negative CLC term τCLCAr (Ω). (Dot-dashed black line) Retrieved by FROG-CRAB, using
the input Ne dipole. (Dashed red line): Input Wigner delay of Ar.
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photoionization time delay qualitatively. On the other hand, for high-energy photoelectrons

such as in the experiment by Schultze et al., where an XUV pulse centered at 106 eV

was used, the SFA is quite adequate. In this circumstance, the dipole phase (time delay)

retrieved using FROG-CRAB can be treated as the dipole phase (time delay) of the XUV

photoionization alone. Ideally the retrieved results should be independent of the IR and the

XUV used. However, at high photoelectron energies, the dipole phase is relatively flat with

respect to the energy, thus the retrieved dipole phase will be sensitive to any inaccuracy

resulting from the FROG retrieval algorithm, especially if the XUV has some degree of

attochirp. Underlying this difficulty is the fact that the spectrogram is much less sensitive

to the dipole phase of the target than to the phase of the XUV pulse. In view of this

difficulty, the time delay of 21 as reported by Schultze et al. may contain intrinsic errors in

the retrieval process. Moreover, the FROG-CRAB method imposes a limitation on the XUV

bandwidth. For broadband XUV pulses the central momentum approximation used in the

FROG-CRAB method would fail. As an alternative we have proposed a procedure based

on fitting to retrieve the dipole phase of an unknown target using a well-known reference

target, which is applicable for XUV pulses with a broad bandwidth.

The Wigner time delay is defined as the first-order energy derivative of the dipole phase.

This time delay is actually remotely related to the original time delay defined by Wigner for a

stationary system. The transition dipoles are for photoelectrons emerging in the direction of

the polarization axis, rather than in a particular partial wave. Only by analyzing the whole

electron wave packet that is generated in XUV photoionization one can draw a conclusion

about the time information of the photoelectrons. The Wigner delay taken at the peak

energy of the wave packet can be understood as the group delay of the electron wave packet

only when the XUV pulse is transform-limited. The time delay thus defined does not

convey the notion of the delay of a photoelectron reaching the detector directly. While a

large Wigner time delay may imply a slowdown of the electron wave packet after it leaves the

atom, such a slowdown cannot be measured experimentally, especially on the attosecond
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time scale with conventional detectors. In fact, a similar “slowdown” occurs when light

travels through a dispersive medium. A group velocity (or an index of refraction) can be

defined if the dispersion is small. When the medium is highly dispersive, the group velocity

alone cannot describe the motion of the wave packet. In this case, a full characterization

of the spectral phase is needed. In the same vein, for the streaking experiment, it is the

spectral phase of the electron wave packet generated by the XUV pulse that is retrieved.

This information will enable the full characterization of the complex electron wave packet

including its time dependence in the coordinate space. But using a single time delay to

represent the whole electron wave packet is an oversimplification. This oversimplification is

one of the main reasons for the existing debates, especially when the “delay” is of the order

of a few tens of attoseconds or less.
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Chapter 6

Observing the ultrafast buildup of a

Fano resonance with ATAS

Fano resonance plays a fundamental role in nuclear, atomic, molecular, and condensed-

matter physics. It generally occurs in the situation of photo-excitation of discrete quantum

states embedded in and coupled to a continuum. The discrete bound state decays through

electron-electron correlation by ejection of one electron and relaxation of the ion to a lower-

energy configuration. The energy of the photoelectron emitted through this autoionization

mechanism (referred to as the “closed channel”) coincides with that emitted by direct pho-

toionization (the “open channel”). The two ionization pathways are indistinguishable and

thus interfere, leading to a characteristic shape in the photo-absorption spectrum, that is,

the Fano shape[150]. In the prominent example of helium, a series of doubly excited states

(sp2,n+) between the N = 1 and N = 2 ionization threshold exists. These states can be

coupled to the continuum of He+ (1s) ionic states due to the Coulomb interaction among the

two electrons. Therefore a series of asymmetric Fano lines in the XUV absorption spectrum

can be observed. Each Fano line serves as a signature of the corresponding autoionizing

state. It has been demonstrated that the Fano line shapes can be converted to Lorentzian

shapes and vise versa by applying an intense IR pulse to the XUV excitation[56].
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When an IAP is used to excite the sample then followed by an IR pulse, changing the

relative delay between these two pulses one can measure a series of XUV absorption profiles.

The measured 2-dimensional signal may encode ultrafast dynamics of the sample and this

technique is often referred to as the attosecond transient absorption spectroscopy (ATAS).

ATAS has been performed on noble gas atoms such as Kr[55], Ar[151], Ne[152] and Xe[153].

A lot of theoretical work has been carried out to interpret the absorption spectra where the

IR pulse overlaps with the XUV pulse. The mechanisms which result in such complicated

structures may include light-induced states[154], the Autler-Townes splitting[155], and the

Stark shift[156]. The physics behind these mechanisms lies in the coupling to dark states by

IR photons[157–159]. The subcycle interference fringes[152, 160] can be attributed to the

interference between two pathways that both result in the same final state[161]. Quantum

beating between multiple electronic states was also observed by ATAS, both for Ne[162] and

He[58]. For molecules, recently a vibrational wave packet within the excited electronic state

of H2 was reconstructed via ATAS[163].

This chapter is adapted from a recent publication [164], where the time-dependent

buildup of Fano line shape in photoabsorption spectrum has been observed by using ATAS

technique. Section 6.1 gives a general derivation of the photoabsorption cross section, which

can be calculated from the imaginary part of the induced dipole moment. Section 6.2

presents the ultrafast dynamics of Fano resonance. Considering one bound state embedded

in a continuum, we derived the time-dependent evolution of the two-electron wave packet

based on Fano’s theory[150]. From the wave packet we can easily get the time-dependent

induced dipole moment. Then by approximating the IR pulse as a temporal gate to ter-

minate the induced dipole, an analytical model for the delay-dependent photoabsorption

spectra can be achieved. In Section 6.3 we compare the experimental result and the ana-

lytical model. The agreement confirms that we have observed the dynamics of two-electron

correlation in the form of the time-dependent buildup of Fano resonance. Section 6.4 is a

brief summary of this chapter.
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6.1 Formulation of light absorption at the single atom

level

In absorption spectroscopy there is an exchange of energy between the light and the atom.

We first formulate a generalized cross section for the nonlinear interaction between the light

field and an atom[155]. The Hamiltonian of an atom in the light field can be written as

H = HA + E(t)z. (6.1)

Here E(t) is the light field. It can be an XUV pulse only or a two-color field consisting of

an IAP and a delayed IR field. We consider the light field is linearly polarized along the

z-direction. The electron in the atom is described by HA. The time dependent Schrödinger

equation is

i
∂

∂t
|Ψ(t)〉 = H|Ψ(t)〉. (6.2)

The rate of change of the energy ε of the atom is calculated as

dε

dt
=

d

dt
〈Ψ(t)|H|Ψ(t)〉 = 〈Ψ(t)|∂H

∂t
|Ψ(t)〉

= 〈Ψ(t)|z|Ψ(t)〉 ∂
∂t
E(t) = d(t)

∂

∂t
E(t) (6.3)

where the induced dipole in the time domain is expressed by d(t) = 〈Ψ(t)|z|Ψ(t)〉. Using

the relation Ẽ∗(Ω) = Ẽ(−Ω) one can write

∆ε =

∫ ∞
−∞

d(t)
∂E

∂t
dt =

∫ ∞
−∞

iΩd̃(Ω)Ẽ∗(Ω)dΩ =

∫ ∞
0

ΩS(Ω)dΩ, (6.4)

where the absorption spectra

S(Ω) = 2Im
[
d̃(Ω)Ẽ∗(Ω)

]
. (6.5)
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A generalized absorption cross section σ(Ω) can be defined as the ratio of energy absorbed

per unit time per unit frequency divided by the incident intensity at a given frequency

σ(Ω) =
ΩS(Ω)

I0(Ω)
=

ΩS(Ω)

c|Ẽ(Ω)|2/4π
= 4πα

ΩS(Ω)

|Ẽ(Ω)|2
. (6.6)

where c is given by the inverse of the fine structure constant α. If we are interested in the

light absorption in a narrow frequency range in the vicinity of resonance, and the bandwidth

of the IAP XUV pulse is much greater than this range, then Ẽ(Ω) and Ω can be treated as

constant. Approximately we have

σ(Ω) ∝ Im[d̃(Ω)]. (6.7)

6.2 Ultrafast autoionization dynamics of Fano reso-

nances

Fano resonance was treated in 1961 by U.Fano[150] in terms of the interaction between a

discrete bound state and its embedded continuum. Take the the 2s2p 1P doubly excited

state of He atom as an example and denote this state by |α〉. It is degenerate with the

1sEp 1P continuum states which will be denoted by |βE〉. The Hilbert space consists of two

channels. For the closed channel, it has one eigenstate, |α〉. For the open channel, there

are continuum states, |βE〉. Between the two channels, there is a coupling term VE. The

Hamiltonian can be written as

〈α|H|α〉 = Er, (6.8)

〈βE|H|βE′〉 = Eδ(E − E ′), (6.9)

〈βE|H|α〉 = VE. (6.10)
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In the vicinity of resonance energy Er, one can assume that VE = V is a constant. We use

a very short XUV to excite He atom and assume that at t > 0 the pulse is over. The time

evolution of the wave packet near the resonance for t > 0 can be expressed in terms of the

ground state |g〉, the bound state |α〉 and the continuum |βE〉:

|Ψ(t)〉 ≈ e−iEgt|g〉+ Cα(t)|α〉+

∫
CE(t)|βE〉dE, (6.11)

in which Eg is the ground state energy. The field-free evolution of the coefficients Cα(t)

and CE(t) is governed by time-dependent Schrödinger equation i ∂
∂t
|Ψ(t)〉 = H|Ψ(t)〉, which

turns into the coupled equations:

ĊE(t) = −iV Cα(t)− iECE(t), (6.12)

Ċα(t) = −iErCα(t)− iV
∫
CE(t)dE. (6.13)

Then we can solve Eqs. (6.12) and (6.13) given the energy-independent initial values C
(0)
α

and C
(0)
E . The results are[165]:

Cα(t) = C(0)
α

(
1− i

q

)
e−iErte−

Γ
2
t, (6.14)

CE(t) =
C

(0)
E

ε+ i
e−iErt

{
(q + ε)e−i

Γ
2
εt − (q − i)e−

Γ
2
t
}
. (6.15)

Here we introduce the parameters Γ, q and ε. Γ = 2πV 2 is the width of resonance. The

scaled energy ε = E−Er
Γ/2

. q is the shape parameter in Fano’s theory:

q =
C

(0)
α

πV C
(0)
E

=
〈α|z|g〉

πV 〈βE|z|g〉
. (6.16)

Equation (6.14) shows the bound state decays exponentially. In Eq. (6.15), the continuum

amplitude exhibits the interference between the direct ionization part and the decay part.
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To calculate the absorption spectra we need the induced dipole d(t) for t ≥ 0. Assuming

that the electric field is polarized along the z-axis,

d(t) = 〈Ψ(t)|z|Ψ(t)〉 = Cα(t)eiEgt〈α|z|g〉∗ +

∫
CE(t)eiEgt〈βE|z|g〉∗dE + c.c.

= C(0)
α 〈α|z|g〉∗e−iΩrt

{
(1− i

q
)e−

Γ
2
t +

1

(πV q)2

∫
(q + ε)e−i

Γ
2
εt − (q − i)e−Γ

2
t

ε+ i
dE

}
+ c.c.

(6.17)

Here Ωr = Er−Eg is the resonance frequency. We can apply the rotating wave approximation

to drop the complex conjugate part for XUV absorption. With the help of
∫∞
−∞

1
ε+i
dε = −iπ,

Equation (6.17) can be simplified to

d(t) ∝ i

[
2δ(t) +

Γ

2
(q − i)2e−

Γ
2
te−iΩrt

]
. (6.18)

Then according to Eq. (6.7), the photoabsorption cross section or the optical density (OD)

takes the following form:

σ(Ω) ∝ Im

[∫ ∞
0

d(t)eiΩtdt

]
∝ Re

[
1 +

Γ

2
(q − i)2

∫ ∞
0

e−
Γ
2
tei∆Ωtdt

]
(6.19)

∝ Re

[
1 +

(q − i)2

1− iε

]
=

(q + ε)2

1 + ε2
. (6.20)

In the above equations ∆Ω = Ω − Ωr is the frequency detuning and ε = ∆Ω
Γ/2

is the scaled

energy. Equation (6.20) is the typical form in Fano’s theory to characterize the XUV ab-

sorption cross section in the vicinity of resonance. However, such XUV absorption spectrum

is obtained when t goes to infinity and it does not contain any temporal information about

the buildup of Fano resonance.

If we can terminate the autoionization process at t = τ > 0, the induced dipole in
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Eq. (6.18) becomes

d(t) ∝

 i
[
2δ(t) + Γ

2
(q − i)2e−

Γ
2
te−iΩrt

]
0 ≤ t < τ

0 t ≥ τ
(6.21)

Then the upper integration in Eq. (6.19) is limited to τ instead of infinity, the absorption

cross section becomes

σ(Ω, τ) ∝ Re

[
1 +

(q − i)2

1− iε

(
1− e−

Γ
2
τei∆Ωτ

)]
=

(q + ε)2

1 + ε2
− e−

Γ
2
τ (1 + q2)√

1 + ε2
cos[∆Ωτ + ϕ(ε)], (6.22)

in which

tanϕ(ε) =
q2ε− ε− 2q

q2 − 1 + 2qε
. (6.23)

Equation (6.22) shows that photoabsorption cross section depends on when the autoion-

ization is terminated and can be used to probe the time evolution of the buildup of a Fano

resonance. To remove the decaying part of the resonance one can use an intense delta pulse

to fully ionize the bound state. Conditions very similar to this limit has been used in the

experiment reported by Kaldun et al.[164].

6.3 Experimental observation versus theoretical calcu-

lation

In Kaldun’s experiment, the transient buildup of the 2s2p 1P resonance of helium was

observed. The 2s2p 1P resonance has the parameters Ωr = 60.15 eV, Γ = 37 meV which

corresponds to a lifetime of 17 fs, and q = −2.75. An 150 as IAP is used to excite the helium

from the ground state with photon range from 50-72 eV and thus triggers the buildup of

2s2p resonance at t = 0. Then at a delayed time t = τ > 0 a 7 fs, 740 nm near-infrared
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laser with intensity of about 1013 W/cm2 was used to ionize the system, depleting the 2s2p

autoionizing state and terminating the buildup process. Since the IR intensity is high enough

and the IR duration is much smaller than the lifetime of the bound state, we can assume

the doubly excited state is ionized instantaneously and completely. By changing the time

delay between the near-IR with respect to the XUV, the absorption spectrum from each

time delay are put together to show the buildup of the 2s2p resonance. Figure 6.1 shows

the experimental result. For the unperturbed case, that is, in the absence of the near-IR

pulse, the original Fano line shape is also depicted in the gray line. When τ is small as

compared with the 17 fs lifetime, the short duration in which radiation is emitted by the

XUV-triggered dipole oscillation is insufficient to form a well-defined Fano line, as can be

seen in Fig. 6.1 for τ less than 10 fs. At τ ≈ 6 fs, the effect of the near-IR is the strongest,

and the spectral line is smeared out completely. By increasing the time delay τ , the doubly

excited state has more time to decay, and the interference with the open channel builds up.

This gives rise to a narrower spectral line. After approximately one lifetime, the Fano profile

is already more pronounced and continuously narrows down as the time delay is increased.

For time delays substantially longer than the lifetime, the original Fano absorption profile

is recovered. However, this comparison is limited by the finite experimental resolution (50

meV FWHM), which has a noticeable effect on the narrow unperturbed line.

To ensure that the transient photoabsorption spectrogram shown in Fig. 6.1 indeed can

be interpreted as a “movie” of the buildup of the Fano resonance even though it is actually

from a photoabsorption experiment by XUV plus IR pulses. In Fig. 6.2 we display the lineout

of the resonance profiles at a few time delays from the experiment, the ab initio TDSE

calculation of the absorption spectra, and the analytical theory predicted by Eq. (6.22).

The good agreement of the analytical theory with the other two results confirms that this

interpretation is correct in spite of the expected small discrepancies when the near-IR pulse

is overlapping with the XUV pulse.
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Figure 6.1: Transient absorption spectrogram of the helium 2s2p resonance as a function
of photon energy and time delay τ > 0 after the resonance is excited by a 150 as XUV
pulse. At t = τ , an intense 7 fs near-infrared laser pulse was used to completely ionize the
bound part of the resonance within the first few femtoseconds of the near-IR pulse. From
Ref. [164].

Figure 6.2: Comparison between analytic theory, ab initio calculation and experimental
results for the helium 2s2p Fano line formation. (A) Absorption spectra calculated for a
series of time delays between XUV and near-IR according to the analytic expression of
Eq. (6.22). (B) Numerically simulated absorption spectra for a 7 fs FWHM near-IR pulse
with peak intensity of 20 TW/cm2. (C) Experimentally recorded spectra. From Ref. [164].
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6.4 Summary and outlook

In this chapter we report the experimental observation of the ultrafast formation of the

helium 2s2p Fano resonance via high-resolution ATAS. An IAP is applied first to excite

the helium atom, then an intense few-cycle near-IR laser pulse is applied which rapidly

depletes the excited state via strong-field ionization. The IR pulse in turn terminates the

optical response of the atom. In this way we can monitor the buildup of the absorption

line. In this experiment the duration of the IR pulse is much shorter than the lifetime of the

autoionizing state, and the time delay between the XUV and the IR pulses is controlled with

sub-femtosecond precision. An analytical model is derived by us to explain the measured

ATAS spectra. The agreement between the experiment and theory demonstrates that the

physical mechanism of the time-resolved buildup of the Fano resonance is captured by the

measurement. Note that a complementary study by an independent team of researchers[166]

observed the formation of the photoelectron spectrum of the very same transition.

The general method of terminating the coherent dipole response by means of laser-

driven saturated ionization could be used to temporally resolve the buildup of a wide range

of processes that can be tracked via their absorption spectra, for example, the creation

of quasi-particles in solids and the emergence of electron-electron or electron-internuclear

correlations in molecules, or even more generally, the correlation dynamics in open quantum

systems.
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Chapter 7

Summary

Isolated attosecond pulses (IAPs) have been applied to ultrafast pump-probe experiments

in the past decade in order to detect the attosecond electron dynamics in atoms, molecules

and solid-state materials. IAPs are generated by HHG processes taking advantage of various

temporal or spatial gating methods. The frequency spectra of IAPs lie in the XUV region

and can be extended to soft X-ray covering the water window. Up to now most of the

pump-probe experiments are in the XUV plus IR two-color photo-excitation framework,

and either the photoelectron distribution or the XUV absorption spectrum is measured.

With the help of attosecond pulses, the field of ultrafast physics is moving forward to make

real-time electron movies with attosecond temporal resolution, and to control electron wave

packets on the attosecond time scale.

Although attosecond experiments are growing rapidly, some basic techniques used to

measure the attosecond pulse or electron dynamics such as the FROG-CRAB method have

not been carefully calibrated. These methods rely on different models and approximations to

describe the experimental data and therefore have their limitations. In this dissertation we

checked the accuracy of the FROG-CRAB and the PROOF method in IAP characterization.

Photoionization time delay is an attractive topic in attosecond physics and causes a lot of

controversy between theory and experiment. To address this issue we investigated the
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performance of the widely-used FROG-CRAB in the time delay retrieval process.

Moreover, in this dissertation we include our earlier work on wavelength scaling of the

HHG yield using quantum orbit analysis. This work serves as the fundamental of generating

attosecond pulses toward the water window or keV region by mid-IR driving laser pulses. At

last, we mention our recent work on monitoring the buildup of Fano resonance in helium by

attosecond transient absorption spectra, which is another important type of the applications

of IAPs. In the following we will summarize the main conclusions in this thesis.

1. HHG using long-wavelength driving IR

At single-atom level, the real part of the born and return time calculated from QO the-

ory converge to the classical born and return time as the driving wavelength increases.

The returning wave packets as functions of the scaled photon energy corresponding to

a particular quantum orbit also converge to a universal form. At a fixed photon energy,

the wavelength dependence of the HHG yield for the long orbit is λ−4.6 and for the

short orbit λ−10.4. Considering macroscopic propagation, good phase matching tends

to select the short orbit. Therefore it is very challenging to obtain efficient macro-

scopic harmonic emission with long wavelength driving field. The possible solution is

to generate a synthesized laser waveform which enhances the short orbit contribution.

2. Accuracy of FROG-CRAB in IAP characterization

For high-energy electrons the FROG-CRAB works accurately in spite of the central

momentum approximation and the iterative method so long as the bandwidth is not

too broad compared with the central frequency. For low-energy electrons the retrieved

IAPs via FROG-CRAB contain up to 10% errors in pulse duration compared with

the input pulses. The results show that the IAP extracted via FROG-CRAB is still

acceptable although the spectrogram calculated from SFA does not reproduce the

spectrogram calculated using TDSE.

3. Comparison between swPROOF and PROOF
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The original PROOF method is less accurate in retrieving the spectral phases than the

modified swPROOF method, which is then reflected in the errors of pulse duration and

shape in the time domain. The PROOF method uses approximated dipole transition

matrix elements, while the swPROOF is based on an accurate theory so long as the

IR intensity is below 1012 W/cm2. Our simulation has proven that the swPROOF

method is more universal and robust than the original PROOF method. The main

drawback of swPROOF is that in the weak IR field, features of the photoelectron

spectra are dominated by the XUV spectral intensity. The spectral phase enters in

the FSI terms which is only a small effect. On the other hand, the main advantage of

swPROOF that there is no limitation on the bandwidth of the IAP.

4. Accuracy of time delay retrieval from streaking measurements

Due to the insensitivity of the spectrogram to the atomic dipole phase and due to the

central momentum approximation in FROG-CRAB, accurate retrieval of the dipole

phase is difficult unless the XUV is nearly transform-limited and the spectral band-

width of the XUV is relatively narrow. Under the most favorable conditions, FROG-

CRAB can give the phase difference between two transition dipoles as a function of

the photon energy. For low-energy photoelectrons (E < 30 eV), due to the inaccu-

racy of the SFA model, the FROG-CRAB can only retrieve the photoionization time

delay qualitatively. At high photoelectron energies, the dipole phase is relatively flat

with respect to the energy, thus the retrieved dipole phase will be sensitive to any

inaccuracy resulting from the FROG retrieval algorithm, especially if the XUV has

some degree of attochirp. In view of this difficulty, the time delay of 21 as reported

by Schultze et al. may contain intrinsic errors in the retrieval process. We have pro-

posed a procedure based on fitting to retrieve the dipole phase of an unknown target

using a well-known reference target, which is applicable for XUV pulses with a broad

bandwidth.

5. Probing the buildup of Fano line shape by ATAS
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By using a short intense IR pulse to deplete the autoionizing state via strong-field

ionization, we terminate the induced dipole response of helium atom at time delay τ

and thus monitor the buildup of Fano line shape in the ATAS spectra by sweeping the

time delay. An analytical model is derived to explain the measured ATAS spectra.

The agreement between the experiment and theory demonstrates that the physical

mechanism of the time-resolved buildup of the Fano resonance is captured by the

measurement.

In the end, a few critical and interesting issues in attosecond physics have been touched

in this dissertation. All these studies extend the knowledge about the generation, character-

ization and the application of attosecond pulses, and they are helpful for experimentalists

in the future.
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L. E. Zapata, and F. X. Kärtner. Multi-mJ, kHz, 2.1 µm optical parametric chirped-

pulse amplifier and high-flux soft X-ray high-harmonic generation. Opt. Lett., 39:

3145–3148, 2014.

[35] Y. Yin, J. Li, X. Ren, K. Zhao, Y. Wu, E. Cunningham, and Z. Chang. High-efficiency

optical parametric chirped-pulse amplifier in BiB3O6 for generation of 3 mJ, two-cycle,

carrier-envelope-phase-stable pulses at 1.7 µm. Opt. Lett., 41:1142–1145, 2016.

[36] A. D. Shiner, C. Trallero-Herrero, N. Kajumba, H. C. Bandulet, D. Comtois, F. Légaré,
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[46] J. Itatani, F. Quéré, G. L. Yudin, M. Y. Ivanov, F. Krausz, and P. B. Corkum.

Attosecond streak camera. Phys. Rev. Lett., 88:173903, 2002.

141
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A. S. Kheifets, E. Lindroth, A. L’Huillier, and J. M. Dahlström. Measurements of

relative photoemission time delays in noble gas atoms. J. Phys. B, 47:245602, 2014.

[65] C. Palatchi, J. M. Dahlström, A. Kheifets, I. Ivanov, D. Canaday, P. Agostini, and

L. DiMauro. Atomic delay in helium, neon, argon and krypton. J. Phys. B, 47:245003,

2014.

[66] M. Sabbar, S. Heuser, R. Boge, M. Lucchini, T. Carette, E. Lindroth, L. Gall-

mann, C. Cirelli, and U. Keller. Resonance effects in photoemission time delays.

Phys. Rev. Lett., 115:133001, 2015.

[67] A. L. Cavalieri, N. Müller, Th. Uphues, V. S. Yakovlev, A. Baltuška, B. Horvath,
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Appendix A

Abbreviations

IAP Isolated attosecond pulse

XUV Extreme ultraviolet

HHG High-order harmonic generation

IR Infrared

APT Attosecond pulse train

CEP Carrier-envelope phase

SFA Strong-field approximation

PG Polarization gating

DOG Double-optical gating

GDOG Generalized DOG

SPIDER Spectral phase interferometry for direct electric field reconstruction

FROG Frequency-resolved optical gating

RABITT Reconstruction of attosecond beating by interference of two-photon transitions

FROG-CRAB Frequency-resolved optical gating for complete reconstruction of attosecond bursts

PROOF Phase retrieval by omega oscillation filtering

swPROOF scattering wave PROOF
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CPA Chirped pulse amplification

OPA Optical parametric amplification

OPCPA Optical parametric chirped pulse amplification

ATI Above threshold ionization

VMI Velocity map imaging

COLTRIMS Cold target recoil ion momentum spectroscopy

ATAS Attosecond transient absorption spectroscopy

FWHM Full width at half maximum

TL Transform-limited

RPAE Random-phase approximation with exchange

TDSE time-dependent Schrödinger equation

QO Quantum orbit

QRS Quantitative rescattering theory

SAE Single-active-electron

KFR Keldysh-Faisal-Reiss

ADK Ammosov-Delone-Krainov

GDD Group delay dispersion

PCGPA Principal component generalized projection algorithm

LSGPA Least square generalized projection algorithm

DVR Discrete variable representation

GA Genetic algorithm

FSI first-second-order interference

C-C Continuum-continuum

MBPT Many-body perturbation theory

CLC Coulomb-laser-coupling

DLC Dipole-laser coupling
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