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Introduction - current ionization models

Ionization regimes can be classified according to the Keldysh parameter γ:

γ =

√

Ip

2Up

, where Up =
I0

4ω2

Up − Ponderomotive energy

Ip − Ionization potential

I0 − Peak intensity

ω − Frequency of laser field
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Introduction - current ionization models

In this talk, we will mention two common atomic ionization theories:

1) The Perelomov-Popov-Terent’ev (PPT) model [1]

2) The Ammosov-Delone-Krainov (ADK) model [2]

[1] A. Perelomov, V. Popov, and M. Terent’ev, Sov. Phys. JETP 23,924 (1966).

[2] M. V. Ammosov, N. B. Delone, and V. P. Krainov, Sov. Phys. JETP 64, 1191 (1986).
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Introduction - current ionization models

PPT is based on the tunneling ionization theory, but is modified to

accommodate time-dependent fields (E = E0 cosωt)

PPT is accurate in both multi-photon and tunneling ionization regimes [7-9]

[7] F. Yan-Zhuo, Z. Song-Feng, and Z. Xia-Xin, Chin. Phys. B 21 113101 (2012)

[8] I. Barth and O. Smirnova, Phys. Rev. A 84, 063415 (2011)

[9] C. Cornaggia and Ph. Hering, Phys. Rev. A 62 023403 (2000)
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Introduction - current ionization models

ADK is a simplified version of PPT, which assumes that the only factor which

influences the ionization rate is the ionization potential of the atom

– This approximation assumes that the intermediate states are unimportant, and

the critical parameter determining the ionization rate is the ionization potential

ADK is only accurate in the tunneling regime [7-9]

[7] F. Yan-Zhuo, Z. Song-Feng, and Z. Xia-Xin, Chin. Phys. B 21 113101 (2012)

[8] I. Barth and O. Smirnova, Phys. Rev. A 84, 063415 (2011)

[9] C. Cornaggia and Ph. Hering, Phys. Rev. A 62 023403 (2000)
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Introduction - current ionization models

Recently, the ADK atomic ionization model has been extended to work for molecules

– Called the molecular tunneling theory [3] (aka MO-ADK), and is a modification

of the ADK theory to account for the non-spherical symmetry of molecules

Like ADK, MO-ADK is only accurate in the tunneling regime, and does not agree well

with experiment in the low-intensity multi-photon limit (γ � 1)

We use MO-ADK as a benchmark in our studies

[3] X. Tong, Z. Zhao, and C. Lin, Phys. Rev. A 66 033402 (2002).
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Introduction & Motivation

Current molecular ionization theories are lacking in accuracy (e.g. MO-ADK)

Existing atomic models work very well (e.g. PPT) and are in good agreement

with experiment

Our goal is to provide a comprehensive

set of data which can help theorists

improve molecular ionization models

This will allow theorists to build upon existing theories for atomic ionization

to develop more accurate models for molecular ionization
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Our method: simultaneously measure the singly-charged ion yield for a

molecule paired with an atom which has a similar ionization potential and

taking the ratio of the yields M+/A+

Taking the ratio of these simultaneously measured yields has the benefit of factoring

out common experimental conditions which are independent of the physical quantity

we are measuring
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Our method: simultaneously measure the singly-charged ion yield for a

molecule paired with an atom which has a similar ionization potential and

taking the ratio of the yields M+/A+

We study three

molecule/atom pairs:

molecule Ip (eV) Atom Ip (eV)

N2 15.58 Ar 15.76

CO 14.01 Kr 14.00

O2 12.07 Xe 12.13
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Overview of our detection scheme
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We use the Kansas Light Source
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We use the Kansas Light Source
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Laser stabilization - we used power-locking

Power-locking actively stabilizes the output power from KLS by implementing

a closed-loop feedback and control system

– Performed using a Proportional-Integral-Derivative (PID) controller

– The power at the amplifier output is measured and compared to the

user-specified setpoint on the PID

[4] H. Wang et al., Appl. Phys. B: Lasers and Optics 89, 275 (2007).
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Main components of our experiment
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Intensity control system

PBS

Malus’ Law : I(θ) = I0 sin2(2θ)

Single-Electron Ionization of Diatomic Molecules by Femtosecond Laser Pulses W. Erbsen 12 / 38



Introduction & Motivation Experimental Details Intensity Calibration Analysis & Data Preparation Results Conclusions & Outlook

Spectrometer in vacuo
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At the interaction region...

w0x = 12.2 µm, w0y = 11.3 µm

ZRx = 148.7 µm, ZRy = 125.8 µm

` = 1.5 mm
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Gas ratio optimization

In order to take the ratio of the molecule to the atom, we need to have signal

from both species across the entire intensity range

– Atoms tend to ionize easier than their companion molecules

– To ensure uniform detection across both species at low intensities, we

need to compensate by increasing the density of molecules at the
interaction region

– We control the number of particles by changing the pressure ratio in the

gas mixture

Example: Oxygen and Xenon
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Determining the intensity

I(r, z, t,θ)=

Malus’ Law
︷ ︸︸ ︷

4E
(max)
n

πw2
0τ

√

ln2

π
︸ ︷︷ ︸

I0

sin2(2θ)×exp

[

−
r2

w2
0[1+(z/ZR)2]

−
4ln2 t2

τ2

]

,

where: E (max)
n −Pulse energy measured at θ = 45o

τ−Pulse duration (FWHM)

w0−Minimum spot size (e−2 half-width)
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︷ ︸︸ ︷

4E
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n

πw2
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√

ln2

π
︸ ︷︷ ︸

I0

sin2(2θ)×exp

[

−
r2

w2
0[1+(z/ZR)2]

−
4ln2 t2

τ2

]

,

where: E (max)
n −Pulse energy measured at θ = 45o

τ−Pulse duration (FWHM)

w0−Minimum spot size (e−2 half-width)

– The pulse energy was obtained by measuring the average power with a

power meter: En = T ×Pavg, where T is the repetition period of the laser

– The pulse duration measured with a SH-FROG

– we measured the transform-limited pulse to have τ = 30 fs

– The minimum spot size was measured in a separate experiment that we

invented for this purpose...
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Measuring the minimum spot size - review of Gaussian optics

w(z) =w0

√

1+

(
z

ZR

)2

ZR =
πw2

0

λ
(Rayleigh range)
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Measuring the minimum spot size (w0)
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Measuring the minimum spot size (w0)

We obtain w0 by finding ZR from the fit
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We only consider valid data points

Even though power locking helps stabilize the power, small fluctuations still

exist, which will adversely affect our results

– We can solve this in the post-data collection analysis by throwing out

data points corresponding to fluctuations in laser power
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The dynamic range (DR) of our detection system limits our ability to take scans

over a large range of intensities

– At low intensities the onset of a measurable signal occurs when there

are enough ionization events to register a count on the detector

– At high intensities, space-charge presents due to too many ionization

events

This is not good enough

We can circumvent this limitation by taking

several different scans and stitching them

together
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Stitching different scans
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Low scan

Medium scan

High scan

Scan Intensity Range (W/cm2) Dynamic Range Pressure (Torr)

Low 5.0E13−1.0E14 1.6 1.1E-5

Medium 8.8E13−3.3E14 2.1 3.2E-7

High 2.7E14−1.1E15 0.7 4.9E-8

∑ 5.0E13−1.1E15 3.9 -
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Absolute intensity calibration

We applied an absolute intensity calibration on our data

– This is achieved by shifting the intensity scale of our atomic ion yield to

the PPT rate for the same ion
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– This shift factor is applied to the simultaneously measured molecular

yield curve

– This calibration is repeated for each molecule/atom pair
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Results for N2/Ar
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Guo et al. [5] used ADK to calibrate the intensity

[5] C. Guo, M. Li, J. Nibarger, and G. N. Gibson, Phys. Rev. A 58, R4271 (1998).
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Results for N2/Ar
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[5] C. Guo, M. Li, J. Nibarger, and G. N. Gibson, Phys. Rev. A 58, R4271 (1998).

[6] M. J. DeWitt, E. Wells, and R. Jones, Phys. Rev. Lett. 87, 153001 (2001).

[7] T. K. Kjeldsen and L. B. Madsen, Phys. Rev. A 71, 023411 (2005).
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Results for O2/Xe
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Results for O2/Xe
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Ionization suppression is present in O2!

[5] C. Guo, M. Li, J. Nibarger, and G. N. Gibson, Phys. Rev. A 58, R4271 (1998).

[6] M. J. DeWitt, E. Wells, and R. Jones, Phys. Rev. Lett. 87, 153001 (2001).

[7] T. K. Kjeldsen and L. B. Madsen, Phys. Rev. A 71, 023411 (2005).
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Results for CO/Kr
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Results for CO/Kr
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[6] M. J. DeWitt, E. Wells, and R. Jones, Phys. Rev. Lett. 87, 153001 (2001).

[7] T. K. Kjeldsen and L. B. Madsen, Phys. Rev. A 71, 023411 (2005).
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Conclusions

1) We have successfully provided a comprehensive data set which

can be used to quantify the strong-field ionization for N2, O2 and

CO
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Conclusions
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can be used to quantify the strong-field ionization for N2, O2 and

CO

2) Since our atomic ion yields agree very well with theory, our data

can be used to improve upon existing molecular ionization models

3) Our data set marks an improvement over previously published works in

that we:

– Provide a higher density of data points

– Included error statistics in our ratios

– Performed a more accurate absolute intensity calibration using PPT

4) Using power locking along with our data point rejection system, we

were able to take wide intensity scans

5) By stitching several scans together, we achieved a very large dynamic

range
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Conclusions

1) We have successfully provided a comprehensive data set which

can be used to quantify the strong-field ionization for N2, O2 and

CO

2) Since our atomic ion yields agree very well with theory, our data

can be used to improve upon existing molecular ionization models

3) Our data set marks an improvement over previously published works in

that we:

– Provide a higher density of data points

– Included error statistics in our ratios

– Performed a more accurate absolute intensity calibration using PPT

4) Using power locking along with our data point rejection system, we

were able to take wide intensity scans

5) By stitching several scans together, we achieved a very large dynamic

range

6) Observed ionization suppression in O+
2
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