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Abstract

The nuclear rotational period of the simplest molecule H+
2 is about 550 fs, which is more

than 35 times longer than its vibrational period of 15 fs. The rotational time scale is also

much longer than widely available ultrashort laser pulses which have 10 fs or less duration.

The large difference in rotational period and ultrashort laser pulse duration raises questions

about the importance of nuclear rotation in theoretical studies of H+
2 dissociation by these

pulses. In most studies, reduced-dimensionality calculations are performed by freezing the

molecular axis in one direction, referred to as the aligned model. We have systematically

compared the aligned model with our full-dimensionality results for total dissociation prob-

ability and field-free dynamics of the dissociating fragments. The agreement between the

two is only qualitative even for ultrashort 10 fs pulses. Post-pulse dynamics of the bound

wave function show rotational revivals. Significant alignment of H+
2 occurs at these revivals.

Our theoretical formulation to solve the time-dependent Schrödinger equation is an impor-

tant step forward to make quantitative comparison between theory and experiment. We

accurately calculate observables such as kinetic energy, angular, and momentum distribu-

tions. Reduced-dimensionality calculations cannot predict momentum distributions. Our

theoretical approach presents the first momentum distribution of H+
2 dissociation by few-

cycle laser pulses. These observables can be directly compared to the experiment. After

taking into account averaging steps over the experimental conditions, we find remarkable

agreement between the theory and experiment. Thus, our theoretical formulation can make

predictions. In H+
2 dissociation by pulses less than 10 fs, an asymmetry in the momentum

distribution occurs by the interference of different pathways contributing to the same energy.

The asymmetry, however, becomes negligible after averaging over experimental conditions.



In a proposed pump-probe scheme, we predict an order of magnitude enhancement in the

asymmetry and are optimistic that it can be observed.
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Chapter 1

Introduction

1.1 Interaction of atoms and molecules with intense

short laser pulses

Understanding the dynamics of atoms and molecules in intense laser fields is currently

an active area of research. One reason for this activity is the potential for using broad

bandwidth ultrashort pulses to control various physical processes. One of the first steps

in efficient control is understanding the fundamental dynamics involved. Fortunately for

this endeavor, laser technology has flourished, and ultrashort laser pulses can themselves be

controlled quite well. At the same time, fragment imaging techniques have also flourished,

allowing complete measurements of simple processes [15–19]. The convergence of these

technologies has led to a renewed interest in studying the dynamics of the simplest molecule,

H+
2 [20–23].

The Hydrogen molecular ion H+
2 , was discovered by J. J. Thomson in 1907 [24, 25].

Burru in 1927 obtained its first successful solution for the fixed nuclei and the moving

electron by numerical integration [26] of the newly developed Schrödinger wave equation

(1926) [27]. See Ref. [28] for a review of the theoretical study of the structure of H+
2 . Some

experimental and theoretical studies for photodissociation of H+
2 were already performed in

1951 [29]. Ever since the birth of the LASER (light amplification by stimulated emission

and radiation), physicists have found reasons to revisit the dissociation of H+
2 by “short laser

1



1.1 Interaction of atoms and molecules with intense short laser pulses

pulses” to understand the dynamics during its break up and envision dynamics of complex

molecules based on this understanding. Thus H+
2 provides a benchmark system for diatomic

molecules.

Depending on the available technology at a given time, short or ultrashort laser pulses

refer to pulses with different duration. As the regime changes for the available pulses, so does

the meaning of ultrashort pulses. With progressing laser technology from nanosecond to less

than ten femtosecond pulses, questions arise about the behavior of H+
2 on these shorter and

shorter time scales. In fact, as laser pulses get shorter, previously studied phenomena need

to be re-examined, as they form the basis of our physical intuition. That intuition, however,

may be underpinned by assumptions — good for long pulses — that fail for short pulses.

For more than a decade, most theoretical and experimental studies have involved the

interaction of H+
2 with a Ti:Sapphire laser with central wavelength ranging from 760 to

800 nm and pulse lengths from a few hundred femtoseconds to less than 10 fs and laser

intensities up to 1016 W/cm2 [20, 30–43]. In most of the recent experiments, short pulses

like 10 fs are used to study ionization and dissociation of H+
2 [4][22, 44–47].

Many phenomena have emerged from extensive experimental and theoretical work in-

volving laser interaction with the simplest molecule H+
2 . Absorption of one-photon by H+

2 is

commonly referred as bond-softening and gives the dominant contribution to the H+
2 disso-

ciation [37]. The one-photon dissociation for weak fields is mostly referred to as photodisso-

ciation and is commonly used to do spectroscopic measurement and to calculate absorption

cross sections for different rotational and vibrational levels of molecules [29, 48–54]. In an

analogy to above-threshold ionization of atoms, dissociation can occur by absorbing more

than one photon and is thus called above-threshold dissociation (ATD) [4][55–57]. Some

of the fragments dissociate with very low kinetic energy, and the phonomenon responsible

for this behavior is known as below-threshold dissociation [58]. As a special case of below-

threshold dissociation, if fragments dissociate with near zero kinetic energy it is referred to

as zero-photon dissociation.

2



1.1 Interaction of atoms and molecules with intense short laser pulses

For fixed internuclear distances of about 7 and 10 a.u. (1 a.u. = 5.29 × 10−9 cm),

enhancement in the ionization of H+
2 , and also other molecules, was reported by Zuo and

Bandrauk [59]. The signature of this enhancement was a characteristic double peak structure

in the kinetic energy distribution of the ionization fragments. Enhanced ionization at a

crictical internuclear distance corresponds to each peak in the kinetic energy distribution.

Theoretical calculations with dynamical nuclei do not show the enhancement. Instead of

double peaks, multiple peak structure in the kinetic energy release (KER) spectrum of H+
2

ionization at low KER was observed [43, 60]. In an analogy to above-threshold ionization

and above-threshold dissociation, the multiple peaks can be explained due to the absorption

of more than minimum number of photons required to ionize. Thus, the effect is called above

threshold Coulomb explosion [43].

In a strong electric field, the electron gets ionized by an oscillating field but as the field

changes its direction, it can drive electrons back to the nuclei. Electrons which are driven

back to the nuclei by the electric field are called rescattered electrons and the phenomenon

is termed as rescattering [61]. Rescattered electrons can recombine with the parent ion and

recombination causes the electrons to emit harmonics of the oscillating field. This phe-

nomenon of generating harmonics is termed high harmonic generation [62, 63]. In addition

to high harmonic generation, returning electrons to the nuclei can also rescatter and thus

provide structural information about the atoms and molecules [64, 65]. High harmonic gen-

eration and the structural information obtained from rescattered electrons depend on the

orientation and alignment of the molecule [66]. The topic of ionization, rescattering, and

high harmonic generation are not discussed in the dissertation. It is, however, important to

note that the approximations which are revisited in this work may also be reconsidered for

these phenomena.

Laser parameters can effect the phenomena of bond-softening, above-threshold disso-

ciation, above-threshold Coulomb explosion, high harmonic generation and rescattering of

electrons. Experimental and theoretical study and understanding of these phenomena sug-
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1.1 Interaction of atoms and molecules with intense short laser pulses

gest different control schemes for dissociation and ionization by varying laser parameters

[4][43].

Technological advances in short, intense laser pulses have made it possible to do pump-

probe studies of interesting dynamics in atoms and molecules [67, 68]. A pump pulse creates

a coherent vibrational or rotational wavepacket in the molecules and the wavepacket evolves

according to structural properties of the molecules. A subsequent probe pulse monitors the

dynamics by the instantaneous ionization process. Mostly, it is assumed that the probe

pulse ionizes molecules or atoms and does not initiate dynamics in an unpredictable way.

The energy and angular distrubitions of the fragments, therefore, can be used to find the

state of the system at the time delay between pump and probe pulses. In a particular

example, a pump initiates a coherent bound vibrational and rotational wavepacket in H+
2 , the

wavepacket evolves to become dephased and later revives to its initial shape. A probe pulse

can monitor the dephasing and rephasing to provide information about the revival times

of these wavepackets either in KER or angular distributions for vibrational or rotational

revivals respectively.

To look into the ultrafast dynamics of the molecules, probe pulses should be shorter than

the time scale of motion. Three time scales can be associated with the degrees of freedom of

our benchmark system, H+
2 . It contains two protons and one electron. The electron has its

orbital motion on the time scale of a few hundred attoseconds. Nuclei can have vibrational

and rotational motion. Estimates from the difference in the lowest two vibrational states

give the fastest vibrational motion on the time scale of 15 femtoseconds, and finally the

time scale for the fastest rotational motion is about 550 femtoseconds. Thus, the nuclear

vibration is about two orders of magnitude slower than the electronic rotation. This differ-

ence in electronic and vibrational time periods is the basis of the Born-Oppenheimer (BO)

approximation. And clearly nuclear rotation is the slowest among all degrees of freedom.

H+
2 can either dissociate into p+H or can ionize into p+ p + e− by intense laser fields. My

focus will be on the dissociation of H+
2 . Since, in this process, the electron remains bound
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1.1 Interaction of atoms and molecules with intense short laser pulses

to one of the protons, nuclear vibration and rotation are the relavent time scales. To probe

vibrational dynamics, pulses with duration ≤ 10 fs are appropriate to use. For the short

pulses of about 10 fs duration, 55 times shorter than the rotational period of 550 fs, the

question arises “Does the nuclear rotation play any role in H+
2 dissociation and affect the

dynamics?” This is exactly the question I have tried to answer in my work for the past four

years for many aspects of H+
2 dissociation, and I have been able to convert my findings into

my dissertation (see [3–5] for some of our publications).

Unfortunately, even though H+
2 is the simplest molecule, calculating its response to an

intense laser field still lies beyond our abilities if all degrees of freedom are retained. For

this reason, it has become common to neglect nuclear rotation, fixing the molecular axis

along the laser polarization, based on the observation that these aligned molecules domi-

nate dissociation and ionization processes. This observation was made in early calculations

that included nuclear rotation for long pulses [20]. The resulting angular distribution of

dissociation fragments was tightly focused along the polarization direction. Since then, the

vast majority of calculations have assumed aligned, non-rotating molecules, even when the

typical pulse lengths became shorter than the free rotation period, ≈ 550 fs for H+
2 . For

very short pulses like 10 fs, the argument to neglect nuclear rotation relies on geometric

alignment, that is only those molecules can dissociate which are preferentially aligned along

laser polarization. The aligned, non-rotating molecule approximation, commonly referred

to as the aligned model, nowadays appears to be taken by many as a more serious quan-

titative tool for understanding intense field dissociation. Even so, there are studies that

still recognize the importance of including rotation to obtain quantitative agreement with

experiment [31, 69].

In most studies, the time-dependent Schrödinger equation for H+
2 is solved in the BO

representation. According to the BO approximation, since electronic motion is much faster

than nuclear motion because of the large difference in their masses (the reduced mass of the

nuclei is ∼ 1000 times larger than the electron mass), the electronic part of the total Hamil-
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1.1 Interaction of atoms and molecules with intense short laser pulses

tonian can be solved for a fixed internuclear distance. The electronic part of the Hamiltonian

is known as the adiabatic Hamiltonian. The solutions of the adiabatic Hamiltonian are BO

basis functions, and the internuclear-distance-dependent energy eigenvalues give BO poten-

tials for the nuclear motion. Born-Oppenheimer potentials, essentially electronic energy

levels, are also called electronic channels. For H+
2 dissociation, mostly the lowest two elec-

tronic channels 1sσg and 2pσu, with a dissociation limit of p+H(1s), have been included in

theoretical calculations. A detailed description of the method is documented in the following

chapter.

We revisit the H+
2 dissociation including nuclear rotation and vibration and the necessary

electronic states. Wherever possible we compare our results with the aligned model calcu-

lation to find its limitations. In the aligned model, the dissociation probability for initial

vibrational states of the nuclei becomes small with an increase in laser intensity [20, 30, 33].

We refer to this behavior as stabilization. It was already found that stabilization can be

suppressed after including nuclear rotation in some cases [33]. In our study, we found that

for an initial spherical distribution stabilization disappears completely in all cases after

including nuclear rotation [3].

The expectation value of 〈cos2 θ〉, where θ is the angle between the laser polarization

direction and the internuclear axis, provides information about the angular distribution of

both the bound and dissociating parts of the wave function. A laser pulse initiates coherent

rotational and vibrational wavepackets in the bound wave function for the short pulses used

in our study. We found the revival time to be about 4 ps, much larger than the rotational

period of 550 fs. Typical revival times for individual vibrational states are comparable to

the rotational period. Detailed discussion about the dynamics of the bound nuclear wave

function will come in Chap. 5

Moreover, discussion about the dynamics of the dissociating fragments leads to some

surprising conclusions about the axial-recoil approximation and dynamic alignment [5]. Ac-

cording to the axial-recoil approximation, the angular distribution of the fragments at the
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1.2 Incoherent Franck-Condon averaging

detector and at the moment the molecule breaks are the same, that is nuclei move along

the internuclear axis after ionization or dissociation. We also calculate the more differential

physical observables like the kinetic energy release spectrum, the angular distribution and

the momentum distribution of the dissociating fragments. These observables can be com-

pared to the experimental results after necessary averaging which depends on experimental

conditions [4, 12].

Two important concepts are used to describe most of the phenomena related to H+
2 disso-

ciation in this dissertation. I find it important to briefly describe these in the introduction.

1.2 Incoherent Franck-Condon averaging

In an experiment, H+
2 is typically created in two different ways. For an experiment involving

the interaction of an intense laser field with a neutral H2 target, H+
2 is created by the field

ionization of H2. Field ionization launches a coherent vibrational wavepacket on the 1sσg

potential curve of H+
2 . This coherent wavepacket can later be dissociated or ionized by

the same pulse or by another probe pulse. The coherent wavepacket retains the phase

information between its creation and subsequent ionization or dissociation.

In another scenario, H+
2 is created in an ion source by electron-impact ionization of H2.

The ionization occurs on a time scale much shorter than the nuclear vibration and can

be best described by the Franck-Condon principle. According to the Franck-Condon (FC)

principle, an instantaneous electronic transition between two molecular states is accurately

represented by a vertical transition, that is at constant internuclear distance [70]. Thus

the ground vibrational state of H2 becomes the initial state in H+
2 and can be expressed

as a linear combination of all the vibrational states of H+
2 . The distribution of ground H2

vibrational states in terms of H+
2 vibrational states is called the Franck-Condon distribution.

In electron-impact ionization, the Franck-Condon distribution gives a good approximation

to the initial vibrational states distribution [71].

After creation, H+
2 ions are accelerated towards the laser beam and travel for microsec-
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onds before their interaction with the laser. Moreover, in an ion-beam molecules have a

velocity distribution over the averaged beam velocity and the travel time varies for different

molecules. Therefore, to get the exact phase information about the initial state, phases

should be integrated over the distribution of travel times, which effectively makes the ini-

tial vibrational state distribution an “incoherent Franck-Condon distribution”. Thus the

incoherent FC-averaged expectation value of any observable O will be

〈O〉 =
∑

v

fv〈O〉v (1.1)

In Eq. (1.1), the summation is over the bound vibrational states v in the 1sσg channel of

the H+
2 . Franck-Condon factors fv in Eq. (1.1) are defined as

fv = |〈χv|g〉|2, (1.2)

the overlap between the lowest vibrational state wave function g(R) of H2 and the wave

functions χv(R) for the bound vibrational states in H+
2 . Sometimes 〈χv|g〉 are called the

Franck-Condon factors. Since we are only using incoherent FC-averaging, for simplicity we

will refer to |〈χv|g〉|2 as FC-factors. In H+
2 , bound vibrational states of the 1sσg poten-

tial account for about 98 percent of the H2 vibrational state population. The rest of the

population dissociates after electron-impact ionization of H2.

To include the field ionization of H2 exactly in a theoretical formulation is a complete

study by itself. Our focus is to perform the exact calculations for H+
2 dissociation by intense

short laser pulses. Thus, our study corresponds to an ion-beam experiment. So, we start

calculations from individual bound vibrational states of 1sσg and perform “incoherent FC-

averaging” of the observables to make connection with the experiment.

1.3 Diabatic Floquet picture

The diabatic Floquet picture is an intuitive way to understand different H+
2 dissociation

pathways. According to the diabatic Floquet representation, the BO potential curves are
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1.3 Diabatic Floquet picture

dressed by ±n photons and the transition occurs between different photon curves by diabatic

coupling (See Ref. [72] for a review on the Floquet formalism). We want to identify different

dissociation processes by their final states in the diabatic Floquet picture. For that, the

lowest two potential curves of H+
2 are plotted in Fig. 1.1. Figure 1.1 shows the 1sσg potential

(red lines) shifted by 0ω and 2ω, and the 2pσu potential (black lines) by 1ω and 3ω. We

will refer to these four potentials by their thresholds 1sσg − 0ω(2ω) and 1sσg − 1ω(3ω),

respectively.

Some of the commonly used terms for dissociation processes are based on adiabatic

Floquet potential curves. These are bond-softening (BS) and vibrational trapping (VT).

Adiabatic potential curves are obtained by diagonalizing the field-dressed diabatic potential

curves with dipole coupling. In adiabatic potentials, diabatic crossings become avoided

crossings, and the transitions between different adiabatic pathways occur by non-adiabatic

coupling. The gaps between avoided crossings become larger with the field strength, or, in

other words, the crossings “soften”. Thus, the adiabatic dissociation pathway that goes to

2pσu−1ω is normally referred to as bond-softening (marked as BS in Fig. 1.1) [36]. Another

common phenomenon which relies on the adiabatic Floquet representation is vibrational

trapping (marked as VT in Fig. 1.1). In adiabatic potential curves, a well is formed above

the avoided crossing between 1sσg − 0ω and 2pσu − 1ω curves and the vibrational states

lying above the avoided crossing become trapped in the well. This trapping is referred to

as vibrational trapping (VT).

The adiabatic and diabatic representations are completely equivalent. We want to use

the diabatic Floquet representation to define a simple notation for different photon pro-

cesses briefly described in Sec. 1.1 by their final states. These dissociation processes are

zero-photon dissociation, bond-softening, above-threshold dissociation, and below-threshold

dissociation. Zero-photon dissociation is a net-zero photon process and a specialized case of

below-threshold dissociation.

First, we will identify different curve crossings. We define the crossing between 1sσg−0ω
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1.3 Diabatic Floquet picture

Figure 1.1 Diabatic Floquet picture; green
horizontal lines are bound vibrational energy
levels in 1sσg−0ω for zero total orbital angular
momentum; Ellipses show the group of states

dissociating with similar dissociation pathways
indicated by the colored arrows. Dominant dis-
sociation for all the states in the orange ellipse
and above is 1ω.

and 2pσu − 1ω as “one photon crossing”. The crossing between 1sσg − 0ω and 2pσu − 3ω is

“three photon crossing”, and “two photon crossing” is the crossing between 1sσg − 2ω and

2pσu − 3ω. Now, we define different dissociation processes by identifying the pathways and

thresholds.

• Zero-photon dissociation is most likely for the vibrational states above the one-photon

crossing. It occurs by a transition to 2pσu − 1ω and then back to 1sσg − 0ω. The

population can move back and forth between the 1sσg − 0ω and 2pσu − 1ω above

the one-photon crossing and is equivalent to vibrational trapping. So, zero-photon

dissociation occurs in the 1sσg − 0ω channel and we will call it 0ω dissociation. Note

that 0ω dissociation is a two photon process and the transitions described above cannot

explain how it occurs. In Fig. 1.1, the curves are shifted by assuming negligible
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1.3 Diabatic Floquet picture

bandwidth of the laser. The diabatic potentials should have blurry lines with widths

given by the bandwidth of the laser. And the transition to 2pσu−1ω from a high edge

of the bandwidth and to 1sσg − 0ω by a lower frequency will cause 0ω dissociation.

• Dissociation by bond-softening is most likely for the vibrational states by an adiabatic

transition at the one-photon crossing, which is v = 9 for 785 nm wavelength. The

threshold for bond-softening is 2pσu − 1ω and thus will be referred to as 1ω. Vibra-

tional states lying above and below the one-photon crossing can also make adiabatic

transitions to the 2pσu − 1ω channel and therefore can dissociate by 1ω (vibrational

states in magenta and orange ellipses in Fig. 1.1). However, the transition probability

is larger for the states closer to the crossing.

• Below-threshold dissociation occurs for the vibrational states lying below the 2pσu−1ω

threshold (most likely for states in blue ellipse in Fig. 1.1). Dissociation pathways

involve transitions from 1sσg − 0ω to 2pσu − 3ω, back to 1sσg − 0ω, and then to

2pσu − 1ω. To differentiate between multiple transitions to 2pσu − 1ω and a single

transition to 2pσu − 1ω, as in 1ω dissociation, we call the net-1ω dissociation below-

threshold dissociation. Since net-1ω dissociation involves many transitions, it is less

probable compared to 1ω dissociation.

• Above threshold dissociation refers to dissociation at n photon thresholds with n ≥ 2

for 785 nm wavelength. It is most likely for the vibrational states at the three-photon

crossing (v = 3 for 785 nm) and can occur for any vibrational state. The farther the

state is from the crossing, the smaller the probability will be. We want to identify

two pathways for above-threshold dissociation. After the transition at the three-

photon crossing, the population can adopt the adiabatic pathway by a transition at

the two-photon crossing to 1sσg −2ω or can follow the diabatic pathway to 2pσu−3ω.

So, instead of using above-threshold dissociation, we refer to adiabatic and diabatic

pathways by 2ω and 3ω dissociation, respectively.
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So, in this dissertation, 0ω represents zero-photon dissociation, 1ω represents bond-

softening, net-1ω represents below-threshold dissociation, and 2ω and 3ω represent above-

threshold dissociation. The kinetic energy of the dissociating fragments can be estimated

by the difference between the vibrational energy level (green lines in Fig. 1.1) and the

dissociation thresholds.
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Chapter 2

Theoretical formulation to solve the
time-dependent Schrödinger equation
for H+

2 in a laser field

2.1 Introduction

There are a limited number of problems for which the time-independent Schrödinger equa-

tion has analytic solutions. This number becomes really small for analytic solutions to the

time-dependent Schödinger equations (TDSE) involving time-dependent coupling (only one

and two free charged particles have an analytic solution in oscillating fields). This left as the

only choice solving TDSE by numerical techniques. H+
2 is the simplest molecule, consisting

of only two protons and one electron, and yet state-of-the-art numerical schemes offer solu-

tions to the TDSE of H+
2 only for four dimensions (three spatial and one time), while the

system has five spatial dimensions with azimuthal symmetry. If all the dimensions would

be included, then the existing techniques are limited to the dissociation of H+
2 and thus

exclude ionization. For a review about H+
2 ionization and dissociation see Ref. [20, 21]. For

H+
2 dissociation, most of the calculations are performed in the BO-representation and are

limited to the lowest two electronic states of H+
2 , namely 1sσg and 2pσu. Most of the recent

calculations do not incude nuclear rotation and are also limited to two channels.

Pioneering work on solving H+
2 numerically including nuclear vibration and rotation with

primarily the two lowest electronic channels has been done mainly by Giusti-Suzor and co-
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workers [73], Bandrauk and Chelkowski and co-workers [30, 74, 75], and O. Atabek and

co-workers [31, 69, 76–78]. Their work dates back to the time when most of the short laser

pulses had a duration of a few hundreds femtoseconds. Nuclear rotation was considered to

be important as the pulse duration was comparable to the rotational period (556 fs for H+
2 ).

Two main approaches are used to include nuclear rotation in these calculations. In one

approach, nuclear rotation is included as a partial wave expansion [30, 73–75] In a different

method it is included by explicitly solving for the angular part of the wave function using a

grid [31, 69, 76–78]. Grid solutions are used for the nuclear vibrational motion in all cases.

The angular distribution of the dissociating fragments produced by linearly polarized

laser pulses of a few hundred femtoseconds (fs) duration, were found to be narrowly aligned

along the laser polarization [20]. This shows that either the molecule becomes aligned during

the pulse and then dissociates (dynamical alignment) or only the aligned molecules dissociate

(geometric alignment). Both of these arguments suggest that aligned molecules dominate

the dissociation in a linearly polarized laser field. This leads to the reduced-dimensional

theoretical studies of H+
2 by fixing the internuclear axis along the laser polarization and ex-

cluding nuclear rotation. Moreover, with advances in laser technology to generate ultrashort

pulses with few femtoseconds duration, it has become customary to neglect nuclear rotation,

which is extremely slow compared to the time scale of the pulse duration [20, 21, 30, 32, 79–

82]. Nevertheless, we found it important to check the role of nuclear rotation on some

of the theoretical predictions based on aligned model calculations for few or few tens of

femtoseconds laser pulses.

2.2 Theory

We solved the time-dependent Schrödinger equation using the Born-Oppenheimer (BO)

representation1. We first solved the field-free Hamiltonian to get the time-independent BO

basis to later use to construct the total time-dependent wave function. The details of our

1Part of the work in this chapter has appeared in our previous publication [3].

14



2.2 Theory

solution of the field-free equations are given in a previous publication [83], but here we

summarize it briefly for completeness. The field-free Hamiltonian for H+
2 is (atomic units

are used hereafter unless otherwise indicated)

H0 = − 1

2µ
∇2

R − 1

2
∇2

r −
1

rA
− 1

rB
+

1

R
, (2.1)

where µ = m/2 with m the nuclear mass, rA and rB are the position vectors of the electron

relative to the two nuclei, and R is the inter nuclear distance. The adiabatic Hamiltonian

is defined as follows:

Had = −1

2
∇2

r −
1

rA
− 1

rB
+

1

R
. (2.2)

We used prolate spheroidal coordinates to solve the resulting adiabatic equation

Hadφβ(R; ξ, η) = Uβ(R)φβ(R; ξ, η). (2.3)

Note that in this work we have neglected all non-BO terms arising from the R-dependence

of the spheroidal coordinates ξ and η and of the adiabatic solutions φ themselves. A de-

tailed discussion of these terms can be found in [83]. We solve Eq. (2.3) directly using

two-dimensional, direct product b-splines [83]. The label β in Eq. (2.3) represents the

quantum numbers (n,Λ, σz)
2. While convenient computationally, this notation is somewhat

nonstandard, so we define them as follows: n is the separated atom principal quantum

number, Λ is the magnitude of the projection of electronic orbital angular momentum along

the internuclear axis in the body-fixed frame as usual, and σz is the reflection symmetry

through the z = 0 plane in the body-fixed frame. These quantum numbers are related to

the usual “gerade” and “ungerade” labels by σz(−1)Λ = +1 or −1, respectively.

While the BO potential curves and electronic dipole coupling matrix elements are the

same in all the methods used in the present work, the nuclear kinetic energy operator has

been treated differently in each of our three methods. The following subsections describe

these differences.

2The order here is slightly different than the one used in our published article Ref. [3], to link closely to
the standard notation of the 1sσg(2pσu) channel for {n = 1,Λ = 0, σz = +(−)}.
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2.2.1 Time-Dependent Born-Oppenheimer Representation with

Nuclear Rotation (TDBOR)

We used this method for all the calculations in this dissertation, and compared the re-

sults to other methods occasionally. As mentioned above, our first task was to find the

time-independent solutions of the field-free Hamiltonian Eq. (2.3). With nuclear rotation

included, these solutions are eigenstates of the total orbital angular momentum. The laser

field couples these angular momentum states together, so the total time-dependent wave

function will necessarily be a linear combination of these states. This section first details

our construction of the time-independent solutions, then outlines their use in the time-

dependent Schrödinger equation.

Following the procedure described in [83], we rewrite the nuclear orbital angular momen-

tum L in terms of the total orbital angular momentum J and the electronic orbital angular

momentum l as L = J− l. As usual, we will work in the body frame, giving

L2 = J2 + l2 − 2l2z − l+J− − l+J−. (2.4)

The last two terms account for the Coriolis coupling, with J± and l± the ladder operators for

total and electronic orbital angular momentum, respectively. For our present calculations,

we neglect both the Coriolis coupling terms and the electronic orbital angular momentum

components l2x and l2y. We expect the effect of the these terms to be small. Since, the Coriolis

terms couple electronic channels with different Λ and there is a large energy gap between the

lowest σ and π channels. The projection of the electronic orbital angular momentum along

the internuclear axis has the biggest impact on the transition and thus we neglect l2x and l2y.

Nevertheless, one might check the validity of these approximations. These approximations

let us write the field-free nuclear Hamiltonian in the simple form

H = − 1

2µ

∂2

∂R2
+

J2 − l2z
2µR2

+Had. (2.5)

After all of the approximations described above, we are left with six good quantum numbers

α = {J,M,Π, n,Λ, σz} — the last three were defined previously, and we add total orbital
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angular momentum J and its lab frame z-projection M , and the total parity Π. The total

wave function is now

Ψ(R, r) = Fα(R)Φα(R; r, θ, φ). (2.6)

The explicit form of the adiabatic basis functions Φα is

Φα = φnσzΛ(R; ξ, η)ΩJΠ
MΛ(θ, φ, χ). (2.7)

Equation (2.3) defines φnσzΛ(R; ξ, η), and the body-frame electronic azimuthal coordinate

χ has been incorporated into the angular momentum function ΩJΠ
MΛ, which depends on the

two nuclear angles θ and φ as well. In addition to being an eigenstate of J2, Jz, and lz, ΩJΠ
MΛ

is also an eigenfunction of the total parity (Π) and nuclear exchange symmetry P̂12, and is

defined in terms of Wigner D-functions as

ΩJΠ
MΛ(θ, φ, χ) =

1√
2(1 + δΛ0)

√

2J + 1

8π2

[

DJ
−M−Λ(φ, θ, χ) + Π(−1)J+ΛDJ

−MΛ(φ, θ, χ)

]

. (2.8)

This particular representation of the rotational degrees of freedom is not so standard in

molecular physics, but is quite standard in few body physics [84]. Similar previous work

[33, 73], for example, used the more standard expansion over spherical harmonics. To solve

the TDSE numerically, we did not adopt existing techniques but generated the computer

program by ourselves. Since we are calculating all quantities from scratch, however, we

found it more convenient to use Wigner D-functions. Equation (2.8), in fact, reduces to

spherical harmonics for Λ = 0 or M = 0, but is a somewhat more convenient representa-

tion for generalizing to higher Λ and M . Note that for Λ = 0, Π is not an independent

quantum number, but instead is related to J by Π = (−)J . Using Ψ from Eq. (2.6) in the

time-independent Schrödinger equation with the Hamiltonian from Eq. (2.5), projecting out

〈Φα|, and neglecting non-BO terms leads to a set of uncoupled time-independent differential

equations for the nuclear wave function F (R) for each channel α of the form

(

− 1

2µ

∂2

∂R2
+
J(J + 1) − Λ2

2µR2

)

Fα(R) + UnσzΛ(R)Fα(R) = EFα(R). (2.9)

17



2.2 Theory

J M Π Λ σz

M = 0 J ′ = J ± 1 M ′ = M Π′ = −Π Λ′ = Λ,Λ ± 1 (−)Λ
′

σ′
z = −(−)Λσz

M 6= 0 J ′ = J, J ± 1 M ′ = M Π′ = −Π Λ′ = Λ,Λ ± 1 (−)Λ
′

σ′
z = −(−)Λσz

.

Table 2.1 Dipole selection rules. Transitions are possible within each n manifold and to all others
that support a given Λ′ channel. For example, transitions to Λ = 1 are possible for all n ≥ 2.

We used the dipole approximation to include the laser field and wrote the interaction energy

in the length gauge as −E(t) ·d, where E(t) is the electric field and d is the dipole operator.

This term modifies Eq. (2.9) by coupling different adiabatic channels α. Consequently, the

total time-dependent wave function takes the form

Ψ(R, r, t) =
∑

α

Fα(R, t)Φα(R; r, θ, φ). (2.10)

Using this Ψ, we obtain the following set of time-dependent coupled partial differential

equations for the nuclear wave functions in a laser field:

i
∂

∂t
Fα =

(

− 1

2µ

∂2

∂R2
+
J(J + 1) − Λ2

2µR2
+ UnΛσz

(R)

)

Fα − E(t) ·
∑

α′

〈Φα|d|Φα′〉Fα′ . (2.11)

Since the laser polarization is defined in the lab frame and the electronic states are defined

in the body frame, some care must be taken in evaluating the dipole interaction energy. All

necessary details are given in App. A. For all calculations, we have used linearly polarized

light and so only the lab frame z-component of the dipole operator is required. Without

discussing the dipole matrix in detail, it would be useful to identify the selection rules for

the transitions between different channels between α and α′. The selection rules are listed

in Table. 2.1. The only difference between initial M = 0, and initial M 6= 0 seems to be

in the allowed J transition. However, initial M 6= 0 doubles the number of channels for all

the electronic states with Λ ≥ 1. This can be explained by noting that all the electronic

states with Λ ≥ 1 are doubly degenerate. Equation. (2.8) shows that the electronic states

with Λ ≥ 1 will have even parity states. An initial M = 0 allows only the parity favored

transition and thus only half of the Λ states contribute, however, for higher M ’s all the

states can be populated.
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We solved Eq. (2.11) numerically, approximating the radial kinetic energy operator with

a generalized three-point difference scheme [85, 86]. The time evolution combined split op-

erator techniques with a Crank-Nicholson-like approximation. Similar propagation schemes

have been successfully implemented in our previous work [1][15, 85]. I will provide a brief

description of the numerical method here. For a small time step δ, the wave function evolves

according to

F(R, t+ δ) = e−iδH(t+δ/2)F(R, t), (2.12)

where the elements of F are the radial functions Fα. For the purposes of deriving an

algorithm to implement the discretized version of this expression, Eq. (2.11) can be regarded

as two-dimensional in R and α. For our time-dependent Hamiltonian,

H(t) = H0 + E(t)Dz , (2.13)

the field-free part H0 is local in the channel space α but couples different R; the dipole

interaction is local in R but couples different α through the dipole matrix D. This behavior

suggests the split operator scheme

e−iδH(t+δ/2) ≈ e−iH0δ/2e−iE(t+δ/2)Dzδe−iH0δ/2. (2.14)

We approximated each of these exponentials using the Cayley form eiδA ≈ (1− i
2
δA)−1(1 +

i
2
δA). This form is a Padé approximant, is unitary, and is evaluated in practice by solving

a system of linear equations. We checked that unitarity and energy are indeed preserved to

machine precision in field-free propagation. Overall, this scheme is accurate through order

δ2 — a feature preserved by evaluating H(t) at the half-steps t+ δ/2. See App. C for some

of the numerical convergence tests.

2.2.2 Time-Dependent Born-Oppenheimer Representation with

Aligned Nuclei (TDBOA)

In this method, the nuclear motion is restricted to vibration along one direction only. So,

the nuclear wave function does not have any angular dependence and the molecule does not
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rotate. For this study, that fixed direction is along the linearly polarized electric field. Our

implementation of this method is detailed in previous work [15]. Many other studies using

this method have also been conducted and a wide selection are discussed in the reviews in

Refs. [20] and [21].

For an aligned molecule, the expansion of the electronic degrees of freedom on the BO

states leads to the following coupled time-dependent equations for the nuclear wave function:

i
∂

∂t
Fβ =

(

− 1

2µ

∂2

∂R2
+ Uβ

)

Fβ − E(t)
∑

β′

〈φβ |z|φβ′ 〉Fβ′ (2.15)

Here, β stands for n, Λ, and σz, as before. Since, we have assumed the molecule to be

fixed in space parallel to the laser field, we need only the z-component of the dipole matrix

element. The dipole selection rule then dictates that we need only include states with Λ = 0

and σz = ±1 — that is, σg and σu states — since the initial electronic state is 1sσg.

Generally, we don’t need to fix the internuclear axis along the laser polarization , but

we can also fix it at some angle θ. This allows perpendicular transitions from initial Λ = 0

to Λ = 1 by the perpendicular component of the electric field. These transitions are,

however, much less probable compared to the parallel transitions. Thus for a nonzero

angle θ, calcuations can be performed by solving Eq. (2.15), and changing the electric field

amplitude to E(t) cos θ.

The numerical scheme implementing this method is the same as described in the last

paragraph of Sec. 2.2.1 except that the channel index does not include J (see also Ref. [15]).

2.2.3 Time-Dependent Born-Oppenheimer Representation with

Rotation on Lattice (TDBORL)

This approach included nuclear rotation just as the TDBOR in Sec. 2.2.1. The difference is

that the angular degree of freedom is represented by direct discretization on a lattice [31, 69,

76] rather than by a basis expansion. As a consequence, we propagated a two-dimensional

time-dependent nuclear wave function F (R, θ, t) for each channel. We eliminated the φ-

dependence of the total wave function since the linearly polarized pulse conserves M (we

20



2.2 Theory

set M=0).

The purpose of performing calculations using TDBORL was to have an independent

check of the TDBOR results and to test their accuracy. To this end, we included only

two channels for simplicity, taking into account only the 1sσg and 2pσu states. With this

restriction, we get the following time-dependent coupled equations:

i
∂

∂t
F1 =

(

HR1 +
Tθ

R2

)

F1 − E(t) cos θ〈φ1|z|φ2〉F2

i
∂

∂t
F2 =

(

HR2 +
Tθ

R2

)

F2 − E(t) cos θ〈φ2|z|φ1〉F1 (2.16)

In the above equations, θ is the angle between the polarization direction and the internuclear

axis, and the labels 1 and 2 correspond to 1sσg and 2pσu, respectively. The radial part of

the field-free Hamiltonian for each channel is defined as

HRi = − 1

2µ

∂2

∂R2
+ Ui(R); (2.17)

and the angular kinetic energy Tθ, as

Tθ =
J2

2µ
= − 1

2µ

1

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

, (2.18)

since both Λ and M are zero.

To solve Eq. (2.16), both the radial and angular kinetic energy operators are approxi-

mated by a generalized three-point difference scheme [85, 86] as in the other methods above.

We note that our differencing scheme easily handles coordinate systems other than Carte-

sian. In particular, the singularities at θ = 0 and π in Eq. (2.18) pose no problems. Further,

we accomplish this without the usual scaling of the wave function by a factor of
√

sin θ —

which is fortunate since the wave function after this scaling is non-analytic and thus cannot

be differenced, strictly speaking.

The short time propagator is split into five terms

e−iH(t+δ/2)δ ≈ e−i(Tθ/R2)δ/2e−iHRδ/2e−iE(t+δ/2)Dzδe−iHRδ/2e−i(Tθ/R2)δ/2. (2.19)

Different numerical methods were used in previous two-dimensional (R, θ) lattice calcula-

tions [31, 69, 76].
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2.3 Analysis

It was necessary to calculate many physical observables as we studied H+
2 stabilization and

vibrational trapping, field-free dynamics of dissociating and bound wave functions, and

finally the kinetic-energy release, angular, and momentum distributions of p+H. Some of

the calculated observables are used in multiple places. So, I gather the formulation of all the

necessary analysis here to avoid inconsistent notation and confusion about the definition of

different terms. For completeness, the most relevant equations will be reused in the following

chapters.

2.3.1 Initial state for TDBOR

For all the results presented in this dissertation, we have performed calculations starting

from the individual bound vibrational states v of the 1sσg channel. This is explicitly

Fαi
(R, ti) = χvJ(R). (2.20)

Here, αi = {J = Ji,M = Mi,Π = (−1)Ji, n = 1,Λ = 0, σz = +1} is the initial channel of

H+
2 . So, I will use v to represent the initial vibrational state in all cases. In our study, the

initial Ji and the initialMi are mostly taken to be zero. The functions χvJ(R) are the rovibra-

tional bound states of the 1sσg channel [solutions of Eq. (2.9) for the {J, 0, (−1)J , 1, 0,+1}

channel].

2.3.2 Initial state for TDBOA

The procedure for TDBOA is nearly identical to TDBOR, except, of course, there is no

rotation and thus no J or M . The initial state will be each individual bound vibrational

state of the 1sσg channel, and will be identical to the other two methods for our case of

initial J = 0.
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2.3.3 Initial state for TDBORL

This method has only been used to test the accuracy of TDBOR. So, both the TDBOR

and TDBORL have the same initial state. For TDBORL, angular dependence is explicitly

included to define the nuclear wave function for the 1sσg (F1(R, θ, t)) channel as,

F1(R, θ, ti) = χv0(R)Ω0+
00 (θ). (2.21)

For Λ = 0, ΩJΠ
MΛ does not have any χ dependence.

2.3.4 Dissociation probability

In this section, we will calculate the total dissociation probability PD of H+
2 . By “dis-

sociation”, we specifically mean breakup of the system into p+H(nlm). In principle, the

dissociation probability for each nlm atomic orbital can be measured. We, however, refer

to the dissociation probability as the sum of all channels. We calculated PD by projecting

out the total bound state probability after the laser pulse. Bound states are possible in the

1sσg channel for Js from 0 to 35; J > 35 support no bound rovibrational states. We treat

1sσg as the only channel with bound states, and did not add find any contribution to the

bound population from 2pσu bound states. We thus obtained PD for initial J = 0 using the

following expression:

PD = 1 −
∑

J even,v′

|〈χv′J | F+1J010+1(t)〉|2. (2.22)

For TDBOA, we calculated the dissociation probability using Eq. (2.22) without sum-

mation over J as there is no rotation.

The expression for PD for TDBORL is

PD = 1 −
∑

Jv′

|〈χv′JΩJ+
00 |F1(t)〉|2. (2.23)

In Eqs. (2.22) and (2.23), the sum represents the total bound probability. Thus, it

was used whenever it was desirable to calculate the bound probability. Our notation PD
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represents the incoherent Franck-Condon averaged total dissociation probability.

PD =
∑

v

fvPDv (2.24)

with PvD being the dissociation probability from each v, and fv being the Franck-Condon

factor previously defined in Sec. 1.2. Since for most of the calculations we have taken the

initial J = 0, we refer to fv0 as fv for smplicity. Similarly, for the bound probability, to do

FC-averaging we calculate,

PB =
∑

v

fvPBv. (2.25)

2.3.5 Calculating 〈cos2 θ〉 for bound wave function

The observables described in this and following sections are only calculated for the TDBOR

method described in Sec. 2.2.1. Another observable in our study is the 〈cos2 θ〉 for the bound

and dissociating part of the H+
2 nuclear wave function. θ is the angle between the body-

frame axis and the laser polarization direction in the lab-frame. To study the dynamics

of the bound wave function of H+
2 during and after the pulse, we want to calculate the

FC-averaged 〈cos2 θ〉. We will call the FC-averaged 〈cos2 θ〉 simply 〈cos2 θ〉. For anything

else different notation has been adopted. The initial state for individual vibrational states

is defined in Eq. (2.20). The initial channel for the nuclear function Fα(R, t) at initial time

ti is αi = {Ji,Mi, (−1)Ji, 1, 0,+1}3. Since we are using linearly polarized laser pulses, M

will not change from its initial value (here M will refer to Mi). To perform the analysis

during the pulse, the bound probability for individual vibrational states (PBv) is defined

using field-free bound rovibrational states as

PBv =
∑

Jv′

|aJv′(t)|2, (2.26)

where aJv′(t) ≡ 〈χJv′ | FJMΠ10+1(R, t)〉 are the complex amplitudes for populating each

rovibrational state at any time during the pulse, and FJMΠ10+1(R, t) is the nuclear wave

3 1sσg with the JiMi rotational and v vibrational level. I will write the expression for the general initial
Ji and Mi. The specialized case of Ji = Mi = 0 can be obtained from these expressions.
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function of 1sσg for each J as a function of time. Note that for the 1sσg channel (as Λ = 0),

the angular basis functions will be

ΩJΠ
M0 =

1

2

√

2J + 1

8π2
DJ

−M0[1 + Π(−1)J ], (2.27)

and the angular part of the basis functions can simply be ΩJ
0M =

√

2J + 1/8π2DJ
−M0 by

dropping Π from the notation. Also, an initial even J means only even Js and an odd

initial J corresponds to only odd Js in the bound 1sσg channel. In the case of H+
2 , even Js

in 1sσg channels correspond to singlet nuclear spin states, which are anti-symmetric with

respect to proton exchange. However, this will be different for D+
2 , where they correspond

to symmetric singlet and quartet nuclear spin states. The bound part of the nuclear wave

function at any time for each initial vibrational state v can be written as

ψBv(R, t) =
∑

J

ΩJ
0M(R̂)

∑

v′

aJv′(t)χJv′(R); (2.28)

and for post-pulse propagation

ψBv(R, t > tf) =
∑

J

ΩJ
0M(R̂)

∑

v′

aJv′(tf )e−iEJv′ (t−tf )χJv′(R). (2.29)

Here, the final time tf defines the end of the pulse , and EJv is the eigenenergy for the

function χJv. For Λ = 0, there is a χ-dependence in ΩJ
0M . Using Eq. (2.28), we calculated

the expectation value of cos2 θ for each v (〈cos2 θ〉v) by

〈cos2 θ〉v(t) =
1

3PBv(t)

[

PBv(t) + 2(−1)M
∑

J

(2J + 1)
∑

v′

|aJv′(t)|2

+ 4(−1)M
∑

J

√

(2J + 3)(2J + 1)

(

J + 2 2 J
−M 0 M

)(

J + 2 2 J
0 0 0

)

(2.30)

×
∑

v′v′′

〈χJ+2v′′|χJv′〉Re
(

a∗J+2v′′(t)aJv′(t)
)

]

.

It follows from Eq. (2.29) that for t > tf , aJv(t) = aJv(tf )eEJv(t−tf ). After calculating the

〈cos2 θ〉v, we want to perform incoherent FC-averaging. Equation (2.32) gives a value of

one third for an isotropic angular distribution for each v, and thus we would renormalize
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〈cos2 θ〉v to ensure the same value for the FC-averaged isotropic angular distribution. Thus

〈cos2 θ〉 is defined as

〈cos2 θ〉(t) =
1

PB(t)

∑

v

fvPBv(t)〈cos2 θ〉v(t) (2.31)

where, similar to PD in Eq. (2.24), PB is the FC-averaged total bound probability given by

PB(t) =
∑

v fvPBv(t) .

2.3.6 Calculating 〈cos2 θ〉 for the dissociating wave function

Since I will discuss the dynamics of bound and dissociating H+
2 in separate places, I will use

the same notation of 〈cos2 θ〉v for individual v and 〈cos2 θ〉 for the FC-averaged expectation

value of cos2 θ for both bound and dissociating wave functions. Contrary to the bound wave

function, which involves only the single electronic channel of 1sσg, all the channels would

contribute to the dissociating part of the H+
2 wave function. Thus for each v

〈cos2 θ〉v(t) =
1

PDv

∑

β,Π

〈cos2 θ〉v,β,Π(t) (2.32)

Now, 〈cos2 θ〉v,β,Π is the value for each electronic channel β, where β = {n,Λ, σz}, and

parity Π for Λ > 0. Since cos2 θ depends only on the nuclear coordinate, 〈cos2 θ〉v is equal

to an incoherent sum of all electronic channels. For the dissociating wave function, it is

not efficient to extract amplitudes for all the continuum states for all electronic channels

and then use those to analytically calculate 〈cos2 θ〉v(t) for t > tf . So, here we numerically

propagated the continuum wave function after the pulse in the same way as during the

pulse to extract information about the dynamics of 〈cos2 θ〉v(t). To get the dissociating

wave function for the 1sσg, we projected out all the rovibrational states from its nuclear

function. Explicitly, for initial M = 0,

〈cos2 θ〉v(t) =
1

3PDv(t)

[

PDv(t) + 2
∑

β

(−1)Λ
∑

JJ ′

〈FβJ ′(t)|FβJ (t)〉

√

(2J + 1)(2J ′ + 1)

(

J 2 J ′

0 0 0

)(

J 2 J ′

Λ 0 −Λ

)]

. (2.33)
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Similar to Eq. (2.31), FC averaging was done by

〈cos2 θ〉(t) =
1

PD(t)

∑

v

fvPDv(t)〈cos2 θ〉v(t). (2.34)

2.3.7 Theoretical formulation to obtain momentum distribution

A brief description of the steps taken to calculate momentum have been documented in

this section, and the detailed description can be found in App. B. To obtain momentum or

KER-cos θ distributions similar to what has been observed in the experiment, the continuum

wave for the dissociating fragments needs to be expressed in terms of the molecular basis

defined in Eq. (2.7). Our formulation closely followed the steps described in Ref. [87]. For

a particular example, see Ref. [88, 89].

Let us assume at this point that the two protons are distinguishable and are designated as

A and B. The vectors R for internuclear distance and K for relative momentum are defined

from A to B. Note that the scattering coordinate should really be between the proton and

the center-of-mass of the atom. Neglecting this small difference is consistent with the Born-

Oppenheimer approximation since it is of the same order, but it is an approximation. It also

works better here because we are considering relatively small momenta. This issue leads

in collisions to electron translation factors. If a molecule is dissociating with the electron

localized on proton A then the continuum wavefunction as an expansion of molecular basis

is

ΨA(K,R, r) =
∑

α

Cα(K)FEα(R)Φα(R; R̂, r). (2.35)

In Eq. (2.35), Cα(K) are scattering amplitudes and will be determined by applying the

outgoing wave boundry conditions, and FEα(R) are the energy normalized eigenfunctions.

We calculated FEα(R) numerically by solving (H − E)FE = 0. Thus, nuclear energy nor-

malized functions FEα(R) and nuclear wave functions are expressed on the same grid and

are calculated with the same finite differencing scheme.
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Asymptotically, the continuum wave function will have the form of a plane wave for the

nuclei times atomic orbitals for the hydrogen atom on one proton (eiK.R|nlm〉A). Using the

partial wave expansion for a plane wave, we can write

eiK.R|nlm〉A =
1

KR

∑

LmL

iLjL(KR)Y ∗
LmL

(K̂)YLmL
(R̂)|nlm〉A (2.36)

In the above equation, L and mL are the nuclear orbital angular momentum and its pro-

jection along the z-axis, respectively, jL(KR) are the spherical bessel functions and |nlm〉A
are the hydrogen atom basis functions on proton A in the lab-frame. Asymptotically, the

ΨA(K,R, r) defined in Eq. (2.35) become the eiK.R|nlm〉A defined in Eq. (2.36). The an-

gular functions for the nuclei and electron in Eq. (2.35) are the total angular momentum

basis in the body frame, but in Eq. (2.36) are the product basis in the lab-frame. We will

express the product angular momentum basis in the lab-frame in terms of te total angular

momentum basis in the body frame. By doing so, we can easily compare the two contin-

uum wave functions in Eq. (2.35) and Eq. (2.36) to obtain scattering amplitudes Cα(K).

Another thing to consider is that the electronic part of the BO molecular basis in Eq. (2.35)

[φβ(R; ξ, η) solutions of Eq. (2.3)] are defined in the body frame. However, |nlm〉A are the

atomic basis in the lab-frame. So, we will also express the asymptotic body-frame molecular

basis in terms of the lab-frame atomic basis.

These two tasks involve the following steps (see App. B for details):

• Combine the product asymptotic nuclear and atomic bases to construct the total

orbital angular basis.

• In the molecular basis function (Φα defined in Eq. (2.7)), express the body frame

molecular orbitals φβ in terms of body-frame atomic orbitals and then express those

in terms of lab-frame atomic orbitals.

• Simplify to get molecular basis function in terms of lab-frame total orbital angular

momentum basis with J = L + l.
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• Use this relation to extract eiK.R|nlm〉A in terms of Φα(R; R̂, r).

These steps lead to Eq. (B.17) giving

eiK.R|nlm〉A =
1

KR

∑

LmL

iLY ∗
LmL

(K̂)jL(KR)
∑

JΠΛ

(−)M+Λ

√

2L+ 1

2J + 1
〈Ll0Λ|JΛ〉〈LlmLm|JM〉

× (1 + Π(−)L+l+Λ)
√

2(1 + δΛ0)

1√
2
{sβ+ |JMΠnΛ+〉 + sβ−

|JMΠnΛ−〉}. (2.37)

In the above equation, the symbol α+(−) is adopted to express {JMΠnΛ+(−)}, respec-

tively. Moreover, in Eq. (2.37) sβ+(−)

4 is the overall phase factor that appear in the relation

between the molecular and atomic orbitals asymptotically (see Eq. (B.7)). In sβ+(−)
, β+(−)

corresponds to n,Λ,+(−).

For this half collision problem, the scattering solution is a linear combination of outgoing

plane waves and incoming spherical waves as defined in Eq. (B.20). Scattering amplitudes

for each molecular channel α are obtained by comparing the coefficients of eiKR/R from

the asymptotic behavior of FEα(R) and from the scattering wave function. Finally, the

continuum wave function satisfying the appropriate boundary condition is (|K, nlm〉A ≡

ΨA(K,R, r))

|K, nlm〉A −−−→
R→∞

∑

LmLJπΛ

ei κπ
2 Y ∗

LmL
(K̂)(−)M+Λ

√

2L+ 1

2J + 1

× 〈Ll0Λ|JΛ〉〈LlmLm|LM〉(1 + Π(−)L+l+Λ)
√

2(1 + δΛ0)

× 1√
2

{

sα+e
−iδEα+ |Eα+〉 + sα−

e−iδEα
− |Eα−〉

}

(2.38)

In the above equation, δα+(−)
(E) is the scattering phase shift for each channel α+(−), and

κ satisfies the relation,

κ(κ + 1) = ζ2. (2.39)

4β = {n,Λ, σz} the good quantum number for the solutions of adiabatic Hamiltonian in Eq. (2.3).
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In Eq. (2.39), ζ2 collectively represents the coefficient of the effective potential in Eq. (2.9)

falling by 1/R2. It is a subtle point. For all n manifolds, κ(κ + 1) = J(J + 1) − Λ2, with

Λ = n−1. For all other channels, κ will be determined from J(J+1)−Λ2 and BO potentials

UnΛσz
(R), which will have a nonvanishing part falling by 1/R2. This can be explained from

the fact that the φnΛσz
(R; ξ, η) are Stark states asymptotically with nonzero dipole coupling

for each nΛ.

Since we are dealing with a homonuclear molecule, the above states need also to be

properly symmetrized with respect to exchange of nuclei (previously distinctively labeled as

A and B). Although nuclear spin has never showed up in the above derivation, implicitly

a fixed value for the nuclear spin has been chosen depending on the initial state and kept

fixed, as it will not change after applying the laser electric field. Our molecular basis Φα

defined in Eq. (2.7) has been properly symmetrized with respect to nuclear exchange and

follows

P̂12Φα(R; R̂; r) = Πσz(−)ΛΦα(R; R̂; r) (2.40)

So5, symmetrizing would lead to the following continuum state:

|K, nlm〉±A −−−→
R→∞

1√
2

[

|K, nlm〉A ± P̂12|K, nlm〉A
]

, (2.41)

where +(−) correspond to singlet and triplet spin states of the nuclei, respectively. The pro-

cedure to properly symmetrize the continuum wave function for H+
2 was previously discussed

in Refs. [90, 91]. If symmetrization is not done, that would be an inaccurate treatment of the

problem and would only give half of the total dissociation probability [73]. The momentum

distribution is obtained by projecting |K, nlm〉±A onto the final wave function and taking the

modulus squared.

Let us see the simplification of Eq. (2.41) for a given initial state and also assume that

we have only the two lowest electronic channels of H+
2 . In our notation, this means that for

the initial state αi = {+0010+}, the system can only dissociate either in {Π0J10+} (1sσg)

5Reminder α = {JMΠnΛσz}.
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or {Π0J10−} (2pσu) states. This choice restricts the allowed parity (Π), which is now given

by (−1)J . Also note that for an initial even J , only even Js can get populated in 1sσg

and odd Js in 2pσu and vice versa. This means that for this particular case, Π is positive

for 1sσg and negative for the 2pσu channel. Consider these simplifications in Eq. (2.38),

l = m = mL = M = 0, n = 1, J = L, κ = L, and α+(−) = L + (L−), as all other quantum

numbers (Π,M,Λ, and n) are fixed, to obtain

|K, nlm〉A −−−→
R→∞

∑

L

iLY ∗
LmL

(K̂)
1√
2
(s+e

iδEL+ |EL+〉 + s−e
iδEL−|EL−〉). (2.42)

For this case β+(−) = {1, 0,+(−)}, and we use s+(−) ≡ s10+(−) for simplicity. Using

Eq. (2.40),

P̂12|K, nlm〉A −−−→
R→∞

∑

L

(i)LY ∗
LmL

(K̂)
(−1)L

√
2

(

s+e
iδEL+|EL+〉 − s−e

iδEL−|EL−〉
)

. (2.43)

The above state is | −K, nlm〉B , i.e. the electron localized on B and A moving towards the

K direction. Since initial J = 0 corresponds to the singlet spin state, finally

|K, nlm〉+A −−−→
R→∞

1

2

[

∑

L

iLY ∗
LmL

(K̂)

×
{

s+e
iδEL+ |EL+〉(1 + (−)L) + s−e

iδEL−|EL−〉(1 − (−)L)

}]

. (2.44)

For the first(second) term in {}-brackets, only even(odd) L’s are populated. This lets us

write the following simple two-term expression,

|K, nlm〉+A −−−→
R→∞

s+

∑

L even

iLY ∗
LmL

(K̂)eiδEL+|EL+〉+

s−
∑

L odd

iLY ∗
LmL

(K̂)eiδEL− |EL−〉. (2.45)

In the above expression, |EL+〉 and |EL−〉 are simply the energy normalized continuum

states for 1sσg and 2pσu, respectively. The total wave function at the conclusion of the

pulse will be

Ψ(R, r, tf) =
∑

J even

|FJ+(R, tf)〉|J+〉 +
∑

J Odd

|FJ−(R, tf )〉|J−〉. (2.46)

31



2.3 Analysis

The differential probability density per unit energy per unit angle ρ(E, θK) (θK is angle

between K and the laser polarization direction) is

ρ(E, θK) ≡ ∂2P

∂θK∂E
= |+A〈K, nlm|Ψ(R, r, tf )〉|2. (2.47)

=

∣

∣

∣

∣

s+

∑

L even

(−i)LYLmL
(K̂)e−iδEL+〈EL+ |FL+(R, tf)〉+

s−
∑

L odd

(−i)LYLmL
(K̂)e−iδEL−〈EL− |FL−(R, tf)〉

∣

∣

∣

∣

2

. (2.48)

In the above expression, |+A〈K, nlm|Ψ(R, r, tf )〉|2 is equal to the energy distribution be-

cause we used energy normalized scattering states to define |K, nlm〉+A . So, the momentum

distribution ρ(K) (integrated over φK) is related to ρ(E, θK) by

ρ(K) = ρ(E, θK)
dE

dK
= ρ(E, θK)

√

2E

µ
. (2.49)

The energy, or KER distribution (dP/dE) would then simply be, defining aL+(−)(E) =

〈EL+ (−)|FL+(−)(R, tf)〉,

dP

dE
=

∫

ρ(E, θK) sin θKdθK

=
∑

L even

|aL+(E)|2 +
∑

L odd

|aL−(E)|2, (2.50)

the incoherent sum of the contributions from 1sσg and 2pσu, respectively. The orthogonality

property of spherical harmonics makes the contribution of two channels incoherent in KER

distribution. The angular distribution dP/dθK is

dP

dθK
=

∫

ρ(E, θK)dE. (2.51)

The angular distribution does not get simplified much and would be the coherent sum of the

two molecular channels. When two channels do not contribute to the same energy, dP/dθK

can be written as an incoherent sum of 1sσg and 2pσu to a good approximation. Note that

the total dissociation probability is equal to
∫

ρ(E, θK) sin θKdθKdE.
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2.4 Description of the laser field

2.4 Description of the laser field

For all calculations in this dissertation, we used a Gaussian laser pulse of the form

E(t) = E0e
− t2

τ2 cos(ωt + ϕ), (2.52)

where τ is related to the full width of the pulse at the half maximum of intensity (FWHM) as

τ = τFWHM/
√

2 ln 2. The peak electric field in atomic units is E0 =
√

I/3.5× 1016 W/cm2,

with I the peak intensity in W/cm2. The electric field is linearly polarized along the z-axis,

and ϕ, the carrier-envelope phase, is taken to be zero unless otherwise specified. Finally, the

carrier frequency ω is also chosen in almost all cases to correspond to the usual Ti:sapphire

central wavelength of 785 nm unless otherwise specified. To be exact, propagation time in a

Gaussian pulse should be inifinity. We have, however, found that the results converge for an

initial time where the intensity of the pulse is 108 W/cm2 and a final time tf corresponding

to a laser intensity of 106 W/cm2.

2.5 Accuracy test: Comparison between TDBOR and

TDBORL

As our target method is TDBOR, we wanted to verify that the computer code was, in fact,

working correctly, especially since our formulation is a little nonstandard. Checking the

TDBOR method was thus the real goal of our coding the TDBORL method, and we per-

formed a series of tests for this purpose that we report here. For these tests, we used a peak

intensity of 1013 W/cm2 and a pulse length of 45 fs. The resulting dissociation probabilities

are shown in Table 2.2. From the table, we see that the two codes agree very well — the

relative difference in no case exceeds 0.2%. Given the very different representations of the

rotation in these methods, we find this agreement convincing evidence that the TDBOR

formulation and code are correct. We will thus report TDBOR results only in the remain-

der of this dissertation. There are two reasons for not performing all the calculations using

TDBORL. Firstly, TDBOR will be more accurate than TDBORL. The reason is that to
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2.6 Considerations to improve accuracy and efficiency

v TDBOR TDBORL
6 0.0472 0.0472
7 0.7657 0.7658
8 0.9728 0.9729
9 0.9958 0.9958
10 0.9523 0.9520
11 0.8730 0.8742

Table 2.2 Comparison of total dissociation probabilities including rotation via basis expansion

(TDBOR) and direct discretization on a lattice (TDBORL). The pulse parameters were I =
1013 W/cm2, τFWHM = 45 fs, and λ = 785 nm.

perform efficient time-integration in TDBORL, the short-propagator is split into five terms

in Eq. (2.19), and the error is proportional to the commutator [Tθ,HR]. No such splitting

was required in TDBOR. Secondly, TDBOR is more efficient than TDBORL. Occasionally,

we compare results with the aligned model, TDBOA.

2.6 Considerations to improve accuracy and efficiency

Because we are using a generalized finite difference method [85], we can use a non-uniform

radial grid to improve efficiency and accuracy. In particular, we use more points at small

R to represent both the rapid change of the wave function near the classical turning point

and the shorter wavelengths present in the potential well. Figure 2.1(a) shows the actual

grid distribution we used6 At large R, we used a linear grid appropriate for free particles,

and slightly more than half of the points lie at R . 20 a.u. We verified for a typical case

that this non-uniform grid gives the same answer as a converged calculation with a uniform

grid. We also verified that the grid was large enough that reflections from the boundary at

Rmax were negligible and used no absorbing boundaries. We also checked the convergence

of the results with respect to the number of partial waves in TDBOR and with respect to

the number of θ grid points in TDBORL.

6Only recently we found that our grid is not optimal for the problem and a better grid can be obtained
by requiring the accuracy of the local wavelength for the highest energy component in the wave function.
See App. C for the detail and comparison.
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Figure 2.1 (a) The radial grid distribution used in all calculations — only the total number of

points varied. (b) The dynamical change in Jmax as a function of time for a typical calculation.
For this particular case, v = 9, I = 1013 W/cm2, λ = 785 nm, and τFWHM = 45 fs. Figure is
adapted from Ref. [3].

In addition to the efficiencies afforded by our differencing method, we have built a few

other features into our code aimed at efficiency. One of these other features is the ability

to determine the necessary number of partial waves dynamically as the code runs. The

idea is based on the fact that for roughly the first half of the calculation before the field

reaches its maximum, only a small number of Js is required. The code can, therefore, be

sped up considerably by including only this small number. Starting with some small Jmax,

we monitor the total probability in the highest partial wave,
∑

α′

∫

|Fα′Jmax |2dR. When this

probability grows beyond some threshold (10−7 in our calculations), we increase Jmax for the

next time step. We do not, however, allow Jmax to decrease when the probability drops back

below the threshold. The behavior of Jmax for a typical calculation is shown in Fig. 2.1(b).

Since the CPU time of our method scales roughly linearly in the number of partial waves,

it is clear that this technique speeds the code up by about 25%.

Finally, we used a time step of 0.5 a.u. which is sufficient to give results converged to

at least three digits for the slow nuclear dynamics. See App. C for a detailed description

of the convergence criteria for different laser parameters with respect to box size, Jmax, and

number of grid points and time step.
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2.7 Limits of laser parameters and role of n = 2 manifold for 7 and 10 fs pulses

2.7 Limits of laser parameters and role of n = 2 mani-

fold for 7 and 10 fs pulses

We have performed a systematic study of H+
2 dissociation by laser pulses of duration 7,

10, 45, and 135 fs using our TDBOR method. There were two reasons for choosing these

parameters. Firstly, in our group we had existing results from the TDBOA method for 10, 45,

and 135 fs pulses, and we wanted to make a comparison with those results to learn about the

limitations of TDBOA. Secondly, these pulses were commonly used in experimental studies

and thus we could relate to the experiment. We later performed a systematic study for

a 7 fs pulse as this short pulse became more available to perform experiments. For laser

peak intensity I, we were limited to 1013 W/cm2 for 45 fs and longer pulses, and we mostly

limited the calculations to 1014 W/cm2 for 10 fs and smaller durations. I will list the reasons

for these choices:

• The maximum number of partial waves (Jmax) required to get converged results grows

roughly linearly with pulse length (see App. C for details about Jmax for different

pulses).

• The range of internuclear distances or the box size grows with pulse duration

• The box size and hence the number of radial grid points and Jmax also grow with peak

intensity

• With an increase in intensity, multiphoton processes become large, and this can lead

to a significant transition to highly excited electronic channels of H+
2 . Specifically, at

least the n = 2 manifold (with p+H(2lm) dissociation limit) should be included to

test the convergence.

Computing technologies have advanced a lot since we started these studies. However, in

the beginning it was not even possible to check the convergence of the calculations with

respect to highly excited electronic channels for 45 fs and 135 fs pulses because of the
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2.7 Limits of laser parameters and role of n = 2 manifold for 7 and 10 fs pulses

memory constraints and inefficient time propagation. So, we limited our studies to a low

intensity of 1013 W/cm2 and performed only two channel calculations for these pulses.

Memory requirements and numerical propagation time grow linearly with number of grid

points, Jmax, and number of electronic channels. Including the n = 2 manifold makes the

calculation size four times bigger as the number of electronic channels becomes eight for

initial M = 0.

Nevertheless, we included the n = 2 manifold and extended our highest peak intensity

to 1014 W/cm2 for 7 fs and 10 fs pulses as these pulses required a relatively smaller box

size and Jmax. Here, I should mention again that memory constraints would not allow us to

further raise the intensity and also hampered our efforts to get high precision results in the

beginning with the n = 2 manifold included. We included the n = 2 manifold for all the

intensities higher than 1013 W/cm2. The convergence criterion with respect to electronic

channels was five percent or less total probability in the n = 2 manifold. So, we limited the

highest peak intensity to 1014 W/cm2 to keep the population in the n = 2 manifold small

and thus to minimize the population in higher manifolds and also ionization.

While to get converged probabilities in 1sσg and 2pσu, it was important to include the

n = 2 manifold, most of our analysis does not include contribution from these channels,

particularly, momentum, energy, and angular distributions of the dissociating fragments

(see Sec. 2.3.7 and App. B). I could only derive recently the formulation for the momentum

distribution, and it is only implemented for the lowest two electronic channels. We believe

the findings in this dissertation would not change as the total probability in these channels

is less than five percent for all intensities and pulse lengths.

To elaborate why do include higher electronic channels in the calculations and believe

their impact to be smaller in the analysis, the variation in FC-averaged dissociation proba-

bility in the n = 2 manifold is plotted in Fig. 2.2(d). Figure 2.2 also shows PD in Fig. 2.2(b)

and the FC-averaged contribution to PD from 1sσg and 2pσu in Fig. 2.2(c). Thus, we see

from Fig. 2.2(d) that the total population in the n = 2 manifold is four times smaller at
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Figure 2.2 Variation wih time in (a) Electric field E(t); (b) PD; (c) FC-averaged dissociation
probability from 1sσg (black solid line) and 2pσu (red dotted line); and (d) FC-averaged dissociation
probability from n = 2 manifold (results from calculations were extracted at points in (a) and then

the results were interpolated between points to obtain smooth cures in (b)–(d).); Laser parameters
are τFWHM = 10 fs and I = 1014 W/cm2.

the end of the pulse compared to its maximum value during the time propagation. See

Table C.2 for the final and maximum n = 2 manifold contribution at any time in the indi-

vidual vibrational states. Since the peak intensity in Fig. 2.2 is the highest for most of the

calculations, the n = 2 manifold is lower than the one shown in Fig. 2.2(d) for all the lower

intensities.

2.8 Extension of the study to higher J ’s, higher M ’s

and pulses with elliptical polarization

In all the studies, we use an initial J = 0 which corresponds to the singlet nuclear spin

state in H+
2 . In Boltzmann’s distribution, however, it is J = 1 which gets the highest
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2.8 Extension of the study to higher J ’s, higher M ’s and pulses with elliptical polarization

probability, as the degeneracy for J = 1 is 9 (it is 1 for J = 0). For room temperature,

J = 0 accounts for only seven percent of the total probability, while J = 1 has the biggest

contribution at 46 percent, and J = 2 and J = 3 have 14 and 25 percent contributions,

respectively. So, for future studies, it would be preferable to either perform the calculations

using the most probable initial orbital angular momentum state or do the thermal averaging.

For a special case of a 10 fs laser pulse and fixed laser intensity, we compared thermal

averaged momentum, KER, and angular distributions to those of J = 0 for temperatures

ranging from 200 K to 600 K. The results are not presented in the dissertation, however,

for this temperature range, since our preliminary results show that thermal averaging does

not change our conclusions about these distributions. These findings are encouraging but

surprising and we will do more investigation into the behavior of other initial rotational

states and how these average to give results similar to J = 0. Post-pulse dynamics of

FC-averaged 〈cos2 θ〉 indeed change after thermal averaging, and I will discuss it briefly in

Chap. 5.

Since, we have developed the method to include nuclear rotation,so the dipole matrix

elements have been implemented for a generalized initial rotational state. One further step

would be to allow transitions between different M states to study the interaction of H+
2 with

elliptical polarization. There are many interesting questions and also approximations which

need answers and validation. I believe the current general structure of our theoretical for-

mulation would allow the complete generalization of the method to perform full dimensional

calculations for H+
2 dissociation in elliptically polarized light.
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Chapter 3

Dissociation probability

3.1 Introduction

In this chapter, we revisit the validity of the aligned molecule approximation for 10, 45, and

135 fs FWHM, 800 nm laser pulses by comparing the total dissociation probability calcu-

lated with and without nuclear rotation. The agreement, it turns out, is at best qualitative.

Vibrational trapping (VT), for instance, appears quite differently in the two approximations.

Physically, the picture often used to explain this phenomenon is the adiabatic Floquet repre-

sentation [20]. Figure 3.1 shows both the diabatic and adiabatic Floquet Born-Oppenheimer

potential curves for H+
2 . Vibrational trapping (or one-photon trapping) is said to occur when

part of the vibrational wave function becomes trapped in the field-dressed adiabatic poten-

tial well (labeled “VT” in the figure) above the one-photon crossing. Similarly, three-photon

trapping is trapping of the wave function in the field-dressed adiabatic potential well above

the three-photon crossing.

Both one-photon and three-photon trapping have been discussed in previous studies [20,

30, 33]. These phenomena were seen to result in higher survival probabilities — also called

“stabilization” — as a function of the peak laser intensity in aligned molecule calculations

using laser pulses 100 fs or longer [30]. Already 15 years ago, it was found, however, that

nuclear rotation destroys three-photon trapping and suppresses one-photon trapping, at

least for the case of an initial state with high angular momentum [33]. This conclusion was
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3.1 Introduction

based on the fact that nuclear rotation eliminates the intensity-dependent stabilization for

vibrational states lying just above the three-photon crossing, but not for those lying above

the one-photon crossing [30, 33].

In the present study, we focus on one-photon trapping, which, for simplicity, we will call

vibrational trapping (VT). Our results show that nuclear rotation eliminates the intensity-

dependent stabilization for a zero angular momentum initial state. Studying the dynamics

of the probability density, however, we have found that the presence or absence of intensity-

dependent stabilization is not sufficient to answer the question of whether or not VT is

present.

The mechanism of vibrational trapping has also been invoked to explain the higher

survival probability of the vibrational states lying above the one-photon crossing compared

to the state at the crossing for a given peak intensity [32]. Although these results were

from aligned molecule calculations, the authors expected this behavior to persist even if

nuclear rotation were included. Our results show that the qualitative behavior of the total

dissociation probability (PD) for these higher vibrational states is indeed similar from both

the aligned molecule method and the method with nuclear rotation. However, we do not

interpret the lower PD of these states compared to the state at the crossing as evidence of

vibrational trapping. Rather, we believe it is mostly a result of the fact that the high-lying

states are not at the one-photon resonance. A detailed discussion of the behavior of PD as

a function of the initial vibrational state and the laser peak intensity will come in Sec. 3.3.

A closely related process to VT, first identified in aligned molecule calculations is known

as dynamical dissociation quenching. It refers to the possibility of stabilization but in

this case as a function of wavelength and for a coherent initial wave packet [34]. As with

vibrational trapping, nuclear rotation makes dynamical dissociation quenching disappear

except for particular initial ro-vibrational wave packets [76]. As we do not use a coherent

wave packet for the initial state in the present work, however, we will not address the

problem of dynamical dissociation quenching.
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Figure 3.1 Field dressed 1sσg and 2pσu potential curves for H+
2 aligned along the linearly

polarized laser field for I = 1013 W/cm2 and λ = 785 nm. Solid blue lines show the diabatic

curves and dashed red lines show the adiabatic curves near the one photon crossing. BS = bond
softening, VT = vibrational trapping (see also Fig. 1.1). Figure is adapted from Ref. [3].

In a recent study [92], a control scheme based on the aligned model has been proposed

to control the population of a given v taking advantage of the interplay between dynamical

dissociation quenching and VT. Such control schemes are becoming increasingly important,

providing further reason to better understand the limitations of the aligned method.

As mentioned in the introduction, our aim is to quantitatively compare PD from TDBOR

and TDBOA. That is, we want to see to what extent the aligned molecule approximation

really captures the correct physics based on the physical observable PD over a wide range

of intensities rather than on the final angular distribution of the fragments at a few select

intensities as has been a primary justification for this approach. Before making this com-

parison, we want to see if nuclear rotation has any impact on the dissociation by considering

J-distribution and the number of partial waves populated in a calculation in the following

section.

3.2 Significance of rotation

We have performed calculations for pulse lengths of 10, 45, and 135 fs. Our study of the

intensity dependence for the 10 and 45 fs pulses was much more systematic than for 135 fs,

for which results were obtained only at a few intensities. Using the initial state described in
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3.2 Significance of rotation

Eq. (2.20), we performed calculations starting from each J = 0 bound state v. We chose the

highest intensity to be 1013 W/cm2 for 45 and 135 fs pulses and 1014 W/cm2 for 10 fs pulse.

This choice ensures minimal ionization of H+
2 since our method does not include ionization.

For 45 and 135 fs, lowest two electronic channels are included in the calculation, however,

for 10 fs pulse, electronic states in n = 2 manifold are also included for I > 1013 W/cm2 for

3-digits covergence in PD (see App. C for the details about convergence tests).

Figures 3.2(a) and 3.2(b) show Jmax as a function of intensity for each v for 45 and

10 fs laser pulses, respectively. The Jmax plotted in each case is the value at the final

time as determined dynamically during the calculation using the technique described in

Sec. 2.5. Figure 3.2 shows a monotonic increase in Jmax with intensity for each v. We take

the number of Jmax required to get converged results to be a measure of the importance of

nuclear rotation. The more partial waves required, the more important is nuclear rotation for

short pulses like 10 and 45 fs. Moreover, for peak intensities much greater than 1013 W/cm2

— which applies to most experiments — we expect that the effect of rotation should be

even more pronounced. Figure 3.2 also shows a clear maximum around v = 9, 10, 11. These

states lie near the 1ω crossing that leads to 1ω dissociation (see Fig. 3.1 marked as 1ω

[15, 20, 21]). Since J must change by one with each photon absorbed or emitted, it is no

surprise that states near the 1ω crossing have the largest Jmax. For 10 fs pulse, Fig. 3.2(b)

shows a sharp increase in Jmax for v ≥ 15 at intensities higher than 7 × 1013 W/cm2. This

behavior should be investigated as we do not understand this behavior. The largest Jmax

required for 45 fs was 35 and 18 for 10 fs pulse for 1013 W/cm2 peak intensity. If the pulse

length is extended to 135 fs at this intensity, however, then Jmax must be increased to 42 to

ensure convergence. This increase indicates that nuclear rotation becomes more important

as the pulse length increases as one would expect from the simple fact that more time is

available to drive transitions. Moreover, the Jmax is 47 and therefore, is higher than all

above cases, for 10 fs pulse when the peak intensity is increased to 1014 W/cm2.

Further evidence of the importance of nuclear rotation is the fact that the J-distribution
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Figure 3.2 (a) Jmax as function of laser peak intensity and initial v for τFWHM = 45 fs; (b) same

as (a) for τFWHM = 10 fs.
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Figure 3.3 Angular momentum distribution for (a) v = 7 and (b) v = 9. The intensities shown
are 1012 W/cm2 (circles), 5×1012 W/cm2 (diamonds), and 1013 W/cm2 (triangles) for τFWHM = 45
fs and λ = 785 nm. Figure is adapted from Ref. [3].

becomes broader with increasing intensity for each v [see Figs. 3.3(a) and 3.3(b)]. For

instance, at our highest peak intensity of 1013 W/cm2, 97.26% of the population starting

from v=7 and 99.83% starting from v=9 have J higher than zero at the end of the pulse.

So far, we have only discussed how the parameters of the calculations reflect the impor-

tance of including rotation. While these do provide important insights, the real test must

come from the comparison of physical observables. We thus show in Fig. 3.4 the dissociation

probabilities PD calculated using both TDBOR and TDBOA. The calculations share some

general qualitative features, but differ both quantitatively and in the qualitative details.

One similarity we find, for instance, is that in both cases the maximum PD occurs

when the system is initially in v = 9, which stands to reason since it lies closest to the

1ω crossing. The two methods also share the fact that the low vibrational states do not

dissociate significantly in this intensity regime and that the high vibrational states v > 12

show substantial dissociation but do not saturate. Both calculations also show an interesting

decrease in PD for v = 12. This feature has been noted before [32], and as we will see below,

can mostly be traced to the behavior of the bound-free nuclear dipole transition matrix

element (see, for example, the first order perturbation theory results in Fig. 3.5).

While the two methods show some gross similarities, even a cursory examination shows
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Figure 3.4 Total dissociation probability PD as function of laser peak intensity (I) and initial
v: (a) TDBOR and (b) TDBOA for τFWHM = 45 fs; (c) same as (a), and (d) same as (b) for
τFWHM = 10 fs.

many differences in the details. For instance, PD saturates much faster as a function of

intensity in the TDBOA compared to the TDBOR for v = 7, 8, and 9. The reason might

simply be due to geometrical alignment. “Geometrical alignment” refers to the preferential

field-induced dissociation or ionization of the molecules initially aligned along the polariza-

tion of the field [93]. The reduced dimensionality of the TDBOA forces all of the molecules

to be aligned with the field, giving the maximum likelihood of the dominant 1sσg → 2pσu

transition. In the case of the TDBOR, however, our initial J = 0 state is isotropic so that

only a fraction of the initial population is initially aligned with the field. In the TDBOR,

however, the field can also torque the molecule into alignment before dissociating it in a

process referred to as dynamical alignment [93]. We expect that dynamical alignment will

be more important for the 135 fs pulse than for the 45 fs pulse since it is closer to the free

rotation period of 556 fs.

Whichever combination of these mechanisms is at work, it is clear that approximating
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3.3 Effect of rotation on vibrational trapping

dissociation as coming only from molecules completely aligned with the laser polarization

— as is usually done in the TDBOA — is quantitatively insufficient. The facts that all 10,

45, and 135 fs pulses populate a large number of partial waves for TDBOR and that there

are clear differences between the TDBOA and TDBOR PD imply that nuclear rotation is

an important effect to include. Evidence that this holds even for qualitative conclusions is

given in the next section.

3.3 Effect of rotation on vibrational trapping

Another clear difference between the TDBOR and TDBOA in Fig. 3.4 is the behavior

of the high-lying vibrational states, v > 9, where vibrational trapping is conventionally

understood to play a significant role. For the purpose of this discussion, it is useful to

carefully distinguish between the terms vibrational trapping and stabilization. The term

vibrational, or population, trapping commonly refers to the trapping of part of the wave

function in the potential well above an avoided crossing of the field-dressed adiabatic Floquet

potential curves (see Fig. 3.1). Most often, the crossing in question is the one-photon

crossing [30, 32], although vibrational trapping above the three-photon crossing has also

been studied [32]. In either case, these phenomena have primarily been observed and studied

using TDBOA, as has been the similar phenomenon of dynamical dissociation quenching [34].

The term “vibrational trapping” has been applied for higher survival probability of the

high-lying vibrational states either as a function of v [32] or as a function of intensity [30].

The term “stabilization” has also been used to describe the higher survival probability in

each case [30, 32, 34] in analogy to the suppression of ionization as a function of intensity

found previously for atoms [94]. We will use stabilization to describe any case in which the

dissociation probability decreases with intensity. Unfortunately, we cannot identify a simi-

larly clean definition of vibrational trapping. We will thus use this term more qualitatively.

Clearly the two effects are related, and we regard vibrational trapping to be one mechanism

that can give stabilization. It is also possible to have vibrational trapping without stabi-
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3.3 Effect of rotation on vibrational trapping

lization. For instance, the slope of PD with I may only decrease rather than change sign as

it would for stabilization.

Figure 3.4 shows the stabilization studied in Ref. [32], namely that PD for v > 9 is lower

than PD for v = 9. In particular, they cited the fact that PD is not unity as evidence for

stabilization based, presumably, upon the expectation that these vibrational states should

dissociate as readily as v = 9. It is not obvious, though, that these states should indeed

dissociate so readily since they are not at the one-photon resonance. To gain some insight

into this question, recall that the usual explanation of vibrational trapping relies on the

adiabatic Floquet potentials of Fig. 3.1. These necessarily include multiphoton transitions.

It follows that stabilization must be a multiphoton phenomenon. In other words, it should

not appear in a simple first-order perturbation theory calculation. Figure 3.5 shows that PD

from such a calculation, however, reproduces this “stabilization” quite well. The perturba-
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0.3
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P
D

Figure 3.5 Total dissociation probability PD from first order time-dependent perturbation theory
(red circles) and from TDBOR (black diamond). The laser parameters are I = 1011 W/cm2,
λ = 785 nm, and τFWHM = 45 fs. Figure is adapted from Ref. [3].

tive results were integrated over the same laser pulse as the numerical results and included

nuclear rotation. That is, the final nuclear wave function had J = 1 to satisfy the dipole

selection rules for a transition from the initial J = 0 state. The dissociation probability for

each v is the result of integrating over all final continuum energies to obtain the total PD.
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3.3 Effect of rotation on vibrational trapping

Figure 3.5 also compares PD from the full TDBOR calculations, showing good agreement at

the perturbative intensity of 1011 W/cm2. Inspecting the first-order results, we find that the

overlap between the initial and final vibrational states in the dipole matrix element largely

controls the transition probability. We expect this behavior will persist for both TDBOA

and TDBOR calculations for different wavelengths and higher intensities until PD saturates.

We conclude that the lower PD for high v states is thus not a good indicator of vibrational

trapping.

The difference in the behavior of PD for higher vibrational states can be more clearly seen

in Fig. 3.6. It is evident from Fig. 3.6(b), for instance, that PD is lower at I = 1013 W/cm2

for v = 10, 11, 14, and 15 than at I = 1012 W/cm2 for TDBOA. This decrease in PD

is precisely the intensity-dependent stabilization discussed in [30]. Examining Fig. 3.6(a),

however, we find that PD does not decrease for any vibrational state with increasing intensity

over the range of intensities we have considered.
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v

Figure 3.6 Total dissociation probability PD as a function of initial vibrational state v using
(a) TDBOR and (b) TDBOA. The laser parameters are λ = 785 nm, τFWHM = 45 fs. Figure is
adapted from Ref. [3].

Figure 3.7 gives another cut of Figs. 3.4(a) and 3.4(b) — this time, for a fixed v —

and shows the intensity-dependent stabilization discussed in Ref. [30]. In fact, all of the

states shown with v > 9 clearly show a decrease in PD with increasing intensity for TDBOA

which is the definition of stabilization. None of the TDBOR calculations, however, show

any stabilization. The figure also shows that there are not only these qualitative differences
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Figure 3.7 Total dissociation probability PD as a function of the peak laser intensity. The blue

curve (filled circles) indicates the results of TDBOR; and the red curve (open circles), the results
of TDBOA. The laser pulse parameters are τFWHM = 45 fs and λ = 785 nm. Figure is adapted
from Ref. [3].

between the two methods, but also quantitative ones. For instance, TDBOA consistently

predicts higher dissociation, except for v = 10 and 11 above ≈ 8 × 1012 W/cm2 where the

TDBOR prediction is larger. Figure 3.7 thus illustrates that comparisons at a single intensity

do not tell the whole story. Figure 3.7 also shows that the intensity dependence of PD is

very different for different vibrational states in TDBOA. By comparison, the more complete

results including rotation show that, although PD is not the same for different vibrational

states, its dependence on peak intensity behaves in a similar way for all vibrational states

over the range of intensities we have studied. From these results, we conclude that intensity-

dependent stabilization of H+
2 initially in J = 0 does not occur in an intense laser pulse for the

vibrational states lying above the one photon crossing of field-dressed potentials. Previous

studies [30, 33], when started from an initial state with higher angular momentum, however,

have suggested that one-photon stabilization may persist even after including the nuclear

rotation.

For comparison, we show in Fig. 3.8 the results for a pulse with τFWHM=135 fs. The

figure shows the results for vibrational states with significant PD lying above the one-photon
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Figure 3.8 Total dissociation probability PD as a function of initial vibrational state v using

(a) TDBOR and (b) TDBOA. The laser parameters are λ = 785 nm, τFWHM = 135 fs. Figure is
adapted from Ref. [3].

crossing between 1sσg and 2pσu. It is clear from the figure that the trends discussed above

for a 45 fs pulse hold also for the 135 fs pulse. In particular, we emphasize that TDBOA

shows stabilization while TDBOR still does not.

An alternative way to uncover the presence of VT is to study the dynamics of the wave

function during the pulse [20]. Figures 3.9(c) and 3.9(d), calculated with the TDBOA, show

a clear localization of the wave function in the adiabatic potential well (marked as VT in

Fig. 3.1) during the peak of the pulse near t = 0. This trapping of the wave function is, of

course, what is meant by VT [20, 30, 32, 33]. In Figs. 3.9(a) and (b), however, we see that

VT is much weaker, but not entirely absent, when the molecule is allowed to rotate — even

though the total dissociation probability shows no intensity-dependent stabilization. This

discussion illustrates that vibrational trapping and stabilization are different, but related,

phenomena given our definition of stabilization. It also illustrates the difficulty in trying to

quantitatively define vibrational trapping. Nevertheless, we conclude from above discussion

that the effect of nuclear rotation for a 45 fs pulse is sufficient to eliminate the intensity-

dependent stabilization that is present in TDBOA.
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Figure 3.9 Projection of the probability density onto R as a function of time from TDBOR for
(a) v = 12 and (b) v = 15. (c) and (d) show the probability density from TDBOA for v = 12

and v = 15, respectively. The laser parameters in this case are τFWHM = 45 fs, λ = 785 nm, and
I= 1013 W/cm2. Figure is adapted from Ref. [3].

3.4 Curious behavior of v = 12

Dissociation probability for v = 12 shows “suppression” compared to adjacent vibrational

states for all the pulse lengths and peak intensities presented in this chapter. As stated ear-

lier, based on 1st-order perturbation theory results, dipole matrix elemnets for v = 12 would

be responsible for this suppression. To understand how the dipole matrix elements1 cause

a suppression in H+
2 , we plot the square of their amplitude, |Dv(E)|2, for each vibrational

state v as a function of the dissociation kinetic energy release (KER) in Fig. 3.10(b). The

dipole matrix elements can be written as Dv(E)=〈Fα′
E |Dα α′|Fα

v 〉, where F are the nuclear

wavefunctions as a function of internuclear distance; E is the energy of the final continuum

state (KER=E+13.6 eV); v, the initial vibrational state; α and α′2 defined in Sec. 2.2.1, the

initial (1sσg) and final (2pσu) electronic states; and Dα α′(R) = 〈Φα′(R)|z|Φα(R)〉∼R/2,

1 This is bound-free dipole coupling between initial vibrational state in 1sσg and continuum states in
2pσu.

2To remind α represents the set of all quantum number α = {JMΠnΛσz}.
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Figure 3.10 (a) H+
2 potentials and wavefunctions, see text. (b) Square of the amplitude of the H+

2

dipole matrix elements (|Dv(E)|2) as a function of v and KER. Curves shown for 790 nm and 395 nm
are defined by KER=Ev+~ω+13.6 eV. (c) H+

2 dissociation probability density using perturbation
theory (4×1010 W/cm2) for 7 fs and 100 fs, 790 nm pulses, after Franck-Condon averaging. Figure

is adopted from Ref. [12].

where Φ is the Born-Oppenheimer electronic basis defined in Eq. (2.7)3. In this case,

α = {0, 0,+1, 1, 0,+1} and it couples to α′ = {1, 0,−1, 1, 0,−1}. The structured dips

in |Dv(E)|2 in Fig. 3.10(b) result from poor overlap of the continuum wavefunction with the

bound wavefunction as a function of ω, as pictorially shown for v=9 in Fig. 3.10(a) — the

overlap is better for 790 and 450 nm than for 570 nm. Comparison with Fig. 3.10(b) shows

that for v=9 the dipole matrix element is maximal at about 790 nm and oscillates under a

decaying envelope with decreasing wavelength. The dips cause the dissociation suppression

that we observe.

3For explicit expression of dipole coupling, see Eq. (A.3).
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3.5 Concluding remarks

The dissociation probability PD from first-order time-dependent perturbation theory is

related to the dipole matrix elements by PD=
∫

dP
dE
dE, where in the rotating wave approxi-

mation (in atomic units)

dPv

dE
= π

2 ln 2

(∆ω)2
I|Dv(E)|2 exp



−
(

2
√

ln 2(ω − ωfi)

∆ω

)2


 . (3.1)

In this expression, I is the laser peak intensity, ωfi=E–Ev, and ∆ω = 4 ln 2/τFWHM is the

laser bandwidth for the Gaussian pulse. Thus, the choice of ω acts as a filter on Dv(E) as

demonstrated in Fig. 3.10(b) for 395 and 790 nm.

From Fig. 3.10(b) we can make several predictions. For example, at 790 nm we expect

PD to be suppressed for v=12 and 13 due to the minima in |Dv(E)|2. Similarly, at 395 nm we

expect suppression for v=7, 9, and 10. The laser bandwidth (pulse duration) determines the

width of the frequency filter, hence, for very short pulses (.10 fs) we expect the vibrational

peaks to merge in KER and smear to reduce the suppression while for long pulses (&100 fs)

the suppressions will be well-defined.

Using Eq. (3.1) and |Dv(E)|2 from Fig. 3.10(b), we check these predictions by plotting the

KER spectrum from perturbation theory for 100 fs and 7 fs, 790 nm pulses in Fig. 3.10(c).

The expected dips in probability for v=12 and 13 are visible, reducing in contrast from

100 fs to 7 fs. For higher peak intensities, signature of the vibrational suppression in KER-

distribution from theoretical results and its experimental evidence will be presented in a

later chapter (see Sec. 6.6.4)

3.5 Concluding remarks

We have performed calculations for the dissociation of H+
2 in an intense laser pulse using

two schemes: TDBOR and TDBOA, including and excluding nuclear rotation, respectively.

The calculations systematically covered the intensity range 1010 W/cm2 to 1014 W/cm2 for

all possible J = 0 initial vibrational states in 10 fs pulse, and 1010 W/cm2 to 1013 W/cm2

in a 45 fs laser pulse. Even though 45 fs pulse is roughly twelve times shorter than the
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3.5 Concluding remarks

free rotation period, we found that rotation still plays an important role as judged by its

impact on the total dissociation probability. Our study was more compreensive for 45 fs

pulse, however, the brief discussion of 10 fs indicates nuclear rotation significantly change

the behavior of dissociation probability for this pulse as well. We also found that including

rotation completely inhibited intensity-dependent stabilization for laser parameters that the

aligned molecule approximation predicted strong suppression of the dissociation probability

for all 10, 45, and 135 fs pulses. It is important to note, however, that our initial state had

J = 0. Other calculations that have started from higher J have reported that stabilization

persists, although still weaker than for the aligned molecule calculation. Our results may

thus be more applicable to experiments on H+
2 beam targets than to experiments starting

from H2 targets. In the former, the molecules are expected to be in a roughly Boltzmann

rotational distribution. In the latter, H+
2 only appears in the laser pulse after H2 is ionized,

which might give more weight to higher J states. In any case, any control scheme based on

these phenomena should therefore be careful to consider the effects of rotation. As discussed

in Sec. 2.8, for the room temperature, J = 0 account for only seven percent of the total

probability in Boltzmann distribution and J = 1 gets the highest weight. Our preliminary

results for thermal averaging show that the findings presented here would not change, for

initial J = 1 after averaging over initial M = 0,±1.

Finally, this work has shown that intensity-dependent stabilization and vibrational trap-

ping are not the same. While the former can be given a quantitative definition, the decrease

in dissociation probability with increasing intensity, the latter is more difficult to give a sim-

ilarly quantitative definition. In the aligned molecule calculation, one reasonable approach

would be to project the wave function onto the adiabatic Floquet basis and extract the

portion corresponding to the well above the one-photon crossing. Unfortunately, this ap-

proach is not so straightforward for the calculations including rotation as the corresponding

adiabatic Floquet potentials are extremely complicated. So, while vibrational trapping is

easy to identify qualitatively, for any discussion of vibrational trapping beyond this it seems
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necessary to develop a quantitative definition.
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Chapter 4

Rotational dynamics of dissociating
H+

2

4.1 Introduction

Here, we examine the dynamics of the angular distribution of H+
2 dissociating to p+H

using our fully quantum mechanical approach described in Sec. 2.2.1 and has previously

appear in [3]. In particular, we study the relative importance of dynamic and geometric

alignment as a function of the pulse length. Dynamic alignment is the process in which

the laser’s electric field torques the molecules into alignment along the laser polarization

direction before dissociating or ionizing them [21]. Being a light molecule, H+
2 undergoes

greater dynamic alignment than, for instance, I2 in the same laser pulse [21]. Dynamically

aligned dissociating fragments exhibit a narrow angular distribution along the polarization

direction [20]. At the opposite end of the dynamical spectrum, geometric alignment refers to

the preferential dissociation or ionization of the molecules aligned with the laser polarization.

Thus, geometric alignment implies the lack of angular dynamics.

Both dynamic and geometric alignment occur during the laser pulse. The physical ob-

servable in experiments, however, is the angular distribution at the detector — in other

words, at infinite times1. When interpreting their findings, experimentalists often assume

these infinite-time angular distributions are the same as at the moment that the molecule

1The work in this chapter has appeared in our previous publication [5].
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4.2 Dynamics during the pulse

breaks, neglecting any post-pulse rotation of the recoiling fragments [95, 96]. The exper-

imental data analysis does not typically rely on this “axial recoil approximation” as it is

only an interpretive assumption. Nevertheless, this assumption has shaped many people’s

physical picture of the dynamics of diatomic molecules in intense laser pulses.

Since, it does not appear to be a straightforward proposition to experimentally measure

post-pulse alignment, even using pump-probe techniques, we must study it theoretically.

Thus, another of our goals for this chapter is to check the validity of the axial recoil ap-

proximation. While its validity has been addressed in previous studies using a classical

model [97] and using a semi-classical model combined with rigid rotor quantum mechani-

cal calculations [98–100], a fully quantum mechanical examination has not previously been

undertaken.

To address our goals, we performed a comprehensive study of the dynamics of the angular

distribution of H+
2 dissociating in an intense laser pulse for peak intensities from 1010 W/cm2

to 1014 W/cm2. and pulse lengths ranging from 135 fs to 5 fs. Although all of the pulses in

this range are very short compared to the free rotational period of H+
2 (≈ 556 fs), the angular

dynamics both during and after the pulse changes character significantly. We illustrate the

importance of nuclear rotation in all cases by comparing the results of our calculations with

and without nuclear rotation. We conclude, perhaps surprisingly, that even for pulses as

short as 5 fs it is important to include nuclear rotation in order to obtain accurate angular

distributions.

4.2 Dynamics during the pulse

As mentioned in Sec. 4.1, the dynamics of the angular distribution is generally described

by the limits: geometric and dynamic alignment. Defining these phenomena quantitatively

within the TDBOR (or experimentally) is not a simple task. Fortunately, comparing the

TDBOA and TDBOR results for the total dissociation probability PD has proven to be

a useful way to quantify dynamic alignment (see Secs. 2.2.1 and 2.2.2 for details of the
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4.2 Dynamics during the pulse

methods). This usefulness follows from the fact that the molecule is not allowed to rotate

in TDBOA and thus displays purely geometric alignment. The magnitude of the dynamic

alignment is thus given by the difference in PD between the two calculations. Care must

be taken when performing this comparison, however, to ensure that the initial angular

distribution in the two methods match.

The TDBOR results presented here start from the J=0 state, where J is the total orbital

angular momentum. To mimic this initial angular distribution, the TDBOA results must

be averaged over the initial angle θ between the internuclear axis and the laser polarization

as follows:

P̄D(I) =

∫ π

0
PD(I, θ) sin θdθ
∫ π

0
sin θdθ

, (4.1)

where I is peak intensity. Since we consider comparatively low intensities in the TDBOA,

the above integral can easily be converted to an intensity integral using the fact that the

1sσg to 2pσu transition provides the dominant contribution to H+
2 dissociation [20, 21]. This

is a parallel, ∆Λ=0, transition that depends only on the component of laser field along the

internuclear axis. We verified that the contribution of perpendicular transitions is indeed

negligible by including higher excited electronic states. We can therefore define an effective

intensity, Ieff = I cos2 θ, so that PD(I, θ) = PD(Ieff , 0). This transforms the above equation

to

P̄D(I) =
1

2

∫ I

0

PD(Ieff , 0)
dIeff√
IeffI

. (4.2)

We have calculated and analyzed PD as a function of peak laser intensity for three pulse

lengths — 10 fs, 45 fs and 135 fs. For the 45 fs and 135 fs pulses, we used a maximum peak

intensity of 1013 W/cm2, while for the 10 fs pulse this has been extended to 1014 W/cm2.

Figure 4.1 shows the results for initial vibrational states v=7, 9, and 12. Dissociation is

dominated by the 1ω from v=9. The figure also includes PD obtained by averaging over the

initial vibrational states, each weighted by their Franck-Condon factor from the H2 ground

vibrational state as is appropriate for comparison with ion-beam H+
2 targets [79].
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Figure 4.1 The total dissociation probability in different approximations for pulse lengths 10,
45, and 135 fs and initial vibrational states v=7,9,12. The last row presents the dissociation
probability averaged over the initial Franck-Condon (FC) vibrational distribution. The red solid
lines (�) show the angle-averaged P̄D(I) from TDBOA; the blue dashed lines (©), the TDBOR

PD(I); and the magenta dotted lines (▽), the TDBOA PD(I, θ = 0). Note that the panels have
different scales for clarity. Figure is adapted from Ref. [5].
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Figure 4.1 shows that the disagreement between the TDBOA and TDBOR results grows

with laser peak intensity in every case, indicating the increasing importance of dynamic

alignment with intensity — which is expected. What may not have been expected is that

dynamic alignment can be significant even for 10 fs pulses, leading to a roughly 10% increase

in PD at 1014 W/cm2 compared to purely geometric alignment. This result can be understood

from the fact that at higher peak intensities, the pulse spends a much longer time at non-

perturbative intensities. A 10 fs, 1014 W/cm2 pulse spends roughly 25 fs at intensities

above 1012 W/cm2. Such exposure is sufficient to drive transitions to the higher angular

momentum states needed for the molecule to align, and the time is long enough for some

rotation to occur.

Figure 4.1 also shows that the difference between the TDBOR and TDBOA results grows

with pulse length. As the pulse length gets longer in the TDBOR calculations, the field acts

for a longer time, allowing for greater dynamic alignment. As the molecule becomes more

aligned, it experiences a higher effective intensity and consequently dissociates with greater

probability. In the TDBOA, the molecule cannot rotate and the molecule experiences only a

fixed effective intensity throughout the pulse. By this argument, the angle-averaged TDBOA

results should always underestimate the exact dissociation probability. This conclusion is

supported by Fig. 4.1 except for v=12 in Fig. 4.1(i) at low intensities where the TDBOA

results are slightly higher.

Another dependence of the difference between TDBOR and angle-averaged TDBOA

dissociation probabilities is on the initial vibrational state. Figure 4.2(a) describes the

behavior of PD as a function of initial vibrational state for each pulse length. Note from

Fig. 4.2(a) that v = 7 is the lowest state that dissociates significantly for the peak intensity

of 5 × 1012 W/cm2 for each pulse length. Moreover, PD has a minimum at v = 12. The

above mentioned two features are qualitatively same for TDBOA calculations. In Fig. 4.2(b),

maximum of the difference between TDBOR intensity dependent PD (PTDBOR
D (I)) and angle-

averaged TDBOA intensity dependent PD (P
TDBOA

D (I)) is plotted for peak intensity up to
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Figure 4.2 Both (a) and (b) show 10 fs (black •), 45 fs (red ×) and 135 fs (blue ∗) results;
(a) shows PD from TDBOR calculations at the peak intensity of 5 × 1012 W/cm2; (b) shows the
maximum of the difference between TDBOR and angle-averaged TDBOA intensity dependent PD

up to peak intensity of 1013 W/cm2 for each initial vibrational state; λ = 785 nm.

1013 W/cm2 for all pulse lengths2. Figure 4.2(b) shows clear peaks at v = 7 and v = 12 for 45

fs and 135 fs laser pulses. Dynamical alignment of the population during the pulse explains

this behavior. Ninth vibrational state lies at 1ω crossing and very weak field can start its

dissociation. So, the leading edge of the pulse will dissociate most of the population for

v = 9 and there will not be much population left to get aligned and then dissociate. But for

7th and 12th vibrational states, the scenario is different. These vibrational states do not lie

at one photon resonance and, therefore, the dissociation probability is small. The part of the

population which is more aligned with laser polarization has better chance to dissociate as

it experience higher effective field. In this case, leading edge of the field aligns the molecule

and then it dissociates experiencing higher effective field. This dynamical alignment has

been the source for the maximum difference between TDBOR and angle averaged TDBOA

results as there is no rotation included in TDBOA. The magnitude of the peak at v = 7

is higher than the the peak at v = 12 because the earlier state is relatively deeply bound

and easiear to rotate. In classical analogy, we can say that moment of inertia is smaller for

v = 7 than for 12. Generally, a state requiring high field to dissociate will tend to undergo

2Maximum of the difference between red curves (▽) and blue curves (�) in Fig. 4.1 is plotted as a
function for initial vibrational state up to peak intensity of 1013 W/cm2.
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4.2 Dynamics during the pulse

more dynamical alignment.

Since the vast majority of calculations in the literature for H+
2 in intense laser pulses

are performed for molecules aligned with the laser field without angle-averaging or nuclear

rotation [20, 21, 30, 32, 79–82], we have also included in Fig. 4.1 PD for θ=0 from the

TDBOA, i.e. without any angle averaging. Because they represent completely aligned

molecules, these results should provide an upper limit on PD since all molecules experience

the maximum possible intensity throughout the laser pulse. As such, these θ=0 TDBOA

results can also be regarded as the extreme of dynamic alignment. Fig. 4.1 again bears

out these expectations with the exceptions coming now at higher intensities for v=12. The

TDBOR results more-or-less interpolate between the angle-averaged TDBOA and the θ=0

TDBOA results as intensity increases from low to high.

For 10 fs pulses, the angle-averaged TDBOA provides reasonably good quantitative

results over much of this intensity range, indicating that dynamic alignment is not playing

a substantial role except at the highest intensities. This conclusion is, of course, consistent

with the common assumption of no nuclear rotation in a pulse so much shorter than the

free rotation period (556 fs for H+
2 ). The θ=0 TDBOA results, however, do not agree with

TDBOR for any intensities in this range, and only give reasonable qualitative agreement for

the Franck-Condon averaged PD.

The angle-averaged TDBOA also gives reasonably good quantitative results for 45 fs

pulses, although over a smaller range of intensities than for 10 fs pulses. Moreover, the θ=0

TDBOA results give a better qualitative answer than for 10 fs, but little better quantitative

agreement where the probability is not saturated. The Franck-Condon averaged TDBOR

results, however, do appear to be headed for more quantitative agreement with the θ=0

TDBOA at higher intensities than can be reliably treated without including ionization.

For 135 fs pulses, the angle-averaged TDBOA is no longer in quantitative agreement

with TDBOR for the intensity range studied. In fact, the TDBOR results are in much bet-

ter quantitative agreement with the θ=0 TDBOA results, especially at higher intensities for
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4.2 Dynamics during the pulse

(a) (b)

Figure 4.3 The angular distribution of p+H fragments at tf for a 10 fs pulse: (a) I=1013 W/cm2

and (b) I=1014 W/cm2. The magenta dot-dashed lines show TDBOA results; and the red solid line,

TDBOR. The two distributions in each panel have been normalized to have the same maximum
value to better show the qualitative comparison. The laser polarization lies along the horizontal
axis in these figures. Figure is adapted from Ref. [5].

the Franck-Condon averaged PD. We conclude, then, that dynamic alignment can be quite

important already for 135 fs pulses — which are still shorter than the free rotation period.

In fact, it was calculations at long pulse lengths similar to these that were originally used to

justify using the θ=0 TDBOA calculations to qualitatively understand the dynamics of H+
2

in an intense field [20]. We see from Fig. 4.1, though, that the θ=0 TDBOA calculations fail

to provide a good qualitative description for most of the cases shown. The greatest discrep-

ancies appear for the initial vibrational states at the shortest pulse lengths. Incidentally, we

note that angle-averaging the TDBOA results eliminates the stabilization (decrease in PD

with intensity) seen in the θ=0 TDBOA curves for v=12. It has already been noted that

inclusion of nuclear rotation largely eliminates this vibrational trapping [3][30, 32, 33], but

it is interesting that angle-averaging does as well.

The comparison in Fig. 4.1 between the TDBOR and the angle-averaged TDBOA PD

shows that for moderate intensities, the angle-averaged TDBOA calculations actually give

fairly accurate results for the shorter laser pulses. This finding is attractive as the TDBOA

calculations are much faster than the TDBOR, even when several intensities need to be

calculated to carry out the angle averaging via Eq. (4.2). On the other hand, if more

detailed information such as the angular distribution is desired, then the predictive power

of the TDBOA degrades quickly. Fig. 4.3 shows the Franck-Condon averaged PD(I, θ) for

a 10 fs pulse from both calculations at the end of the laser pulse tf (defined as the time at

64



4.3 Dynamics after the pulse

Time (fs)
F
C

av
er

ag
ed

〈c
os

2
θ〉

2001000-100-200

0.7

0.65

0.6

0.55

0.5

Figure 4.4 Franck-Condon averaged 〈cos2 θ〉 during the pulse (no symbols) and after the pulse
(symbols) for 10 fs (blue ◦), 45 fs (red ∗), and 135 fs (magenta) pulses at I=1013 W/cm2. Figure

is adapted from Ref. [5].

which the intensity decays to 106 W/cm2). The distributions in Fig. 4.3(a) for 1013 W/cm2,

where the total dissociation probabilities in Fig. 4.1 agree quite well, are similar, although

not in quantitative agreement. Those in Fig. 4.3(b) for 1014 W/cm2, however, show distinct

differences even though the total dissociation probabilities show only about a 25% relative

difference.

4.3 Dynamics after the pulse

We have already shown surprising consequences of nuclear rotation on the dissociation

probability and the angular distribution at the end of the laser pulse for pulses much shorter

than the free roation period. But, as mentioned previously, this distribution is not physically

observable. To obtain the observable, we must extract the angular distribution from the

calculations at infinite time. Since the discussion here will focus on the role of nuclear

rotation in the system’s evolution from the end of the pulse to infinity — and thus on the

validity of the axial recoil approximation — the remainder of this chapter will be based only

on the TDBOR results.

In addition to the angular distribution itself, one quantity commonly used to parametrize

the alignment of a molecule is 〈cos2 θ〉, which is related to the width of the angular distribu-

tion for a molecule. Normally, it is the alignment of the bound molecule that is characterized
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4.3 Dynamics after the pulse

by 〈cos2 θ〉, but we will use it here to help understand the angular evolution of the dissociat-

ing fragments. Fig. 4.4 shows the Franck-Condon averaged 〈cos2 θ〉 for only the dissociating

part of the wave function. The averaging is defined as

〈cos2 θ〉 =

∑

v fv〈cos2 θ〉v
∑

v fvPDv

(4.3)

where the subscript v indicates the initial vibrational state, PDv the total dissociation prob-

ability for v, and fv is the Franck-Condon factor. The quantity 〈cos2 θ〉v in Eq. (4.3) is

calculated with the time-dependent wave function that has had all of the time-independent,

bound rovibrational states projected out. The initial value of 〈cos2 θ〉 for all three pulses is

0.6 — a consequence of the fact that dissociation from J=0 requires absorption of at least

one photon and 〈cos2 θ〉=0.6 for J=1. This result holds for low intensity calculations with

only two channels, and may change after including the π states for high laser intensities.

We note that this figure also supports the discussion of the previous section, showing that

the angular distribution of the fragments starts changing at times early compared to the

pulse length. For instance, 〈cos2 θ〉 for 45 fs has reached its first extreme already at about

20 fs before the peak intensity.

Key to the present discussion is the post-pulse behavior of 〈cos2 θ〉. We define the time

tf at which the pulse intensity decays to 106 W/cm2 as the end of the pulse, so that all

subsequent evolution is effectively field-free and considered post-pulse. We note that by this

definition, the time range in Fig. 4.4 spans times up to tf for the 135 fs pulse. Towards

the end of the pulse, 〈cos2 θ〉 for the 135 fs pulse has already obtained its asymptotic value,

implying that the axial recoil approximation works quite well for 135 fs or longer pulses. In

contrast, 〈cos2 θ〉 for both 45 and 10 fs pulses continues to change towards the end of pulse

and after.

We can understand the behavior displayed in Fig. 4.4 in exactly the same way that the

alignment of bound states by intense laser pulses is understood [101]. In that case, there

are two limits: impulsive alignment when the pulse is much shorter than the free rotation

period, and adiabatic alignment when the pulse is much longer. The mechanism of impulsive
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4.3 Dynamics after the pulse

alignment is the generation of a distribution of angular momentum states by the laser pulse

that do not have time to evolve during the short pulse. There is thus no alignment during

the pulse, but the distribution continues to evolve freely after the pulse ends, leading to

periodic revivals during which the molecules are maximally aligned. In a long laser pulse,

molecules adiabatically align because the field-free states adiabatically correlate to pendular

states in the field — the lowest of which is strongly aligned. The pendular states also involve

a broad distribution of angular momentum states, but in a long pulse, they have time to

evolve into a narrow angular distribution.

Given these two alignment mechanisms, we see from the behavior in Fig. 4.4 that the 10 fs

and 45 fs data are explained by impulsive alignment, demonstrating that this mechanism

works for the dissociating fragments as well as for the bound components. Because the

dissociating component has acquired a broad angular momentum distribution similar to the

bound component, it continues to evolve after the pulse, becoming more aligned on the way

to the detector. There are no revivals for the dissociating component since its moment of

inertia grows as the fragments separate, effectively freezing the angular distribution as the

fragments fly to the detector. The 135 fs data, on the other hand, is explained by adiabatic

alignment. When the molecule becomes aligned near the peak intensity of the pulse, it

dissociates. Because it was in a pendular (or near-pendular) state, its angular distribution

did not evolve further.

To quantify the post-pulse alignment, we have calculated 〈cos2 θ〉 at infinite time. Two

ways to do this are to continue propagating the dissociating part of the wave function to

very large times, or by writing the wave function at the end of the pulse in terms of the exact

scattering states, superposed to give outgoing plane waves at large internuclear distances

as described in Sec. 2.3.7. The former scheme is not very practical and involves extensive

computational work. Therefore, we adopted the latter scheme, but double checked it for

one pulse length with the former to confirm that they converged to the same answer at very

large times. Table 4.1 shows the results for the three pulses of Fig. 4.4, and the results are
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4.3 Dynamics after the pulse

FWHM 〈cos2 θ〉 Relative
(fs) at tf at t→∞ change (%)
135 0.681 0.683 0.3
45 0.640 0.648 1.2
10 0.523 0.545 4.2

Table 4.1 Franck-Condon averaged 〈cos2 θ〉 from TDBOR for I=1013 W/cm2.
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Figure 4.5 Franck-Condon averaged 〈cos2 θ〉 from TDBOR at the end of the pulse (tf ) and at

the detector (t→∞) for a 10 fs pulse. Figure is adapted from Ref. [5].

consistent with that figure. For the 135 fs pulse, the angular distribution is more aligned

than both the 45 and 10 fs pulses, but it barely changes on its way to the detector. The

shorter pulses are less aligned, but have much larger relative change in 〈cos2 θ〉 after the

pulse.

One natural question is: can the relative change in 〈cos2 θ〉 after the pulse be larger than

the 4% found for the 10 fs pulse? To answer this question, we studied the dependence of

the post-pulse alignment on laser peak intensity for the 10 fs laser pulse. Fig. 4.5 shows

the results. In fact, the relative change grows by about a factor of three to a maximum of

about 11% as the peak intensity is raised from 1013 W/cm2. From Fig. 4.5, we see that

the values of 〈cos2 θ〉 at tf and t→∞ both increase monotonically with intensity. It has

already been mentioned, however, in previous section that higher intensities mean longer

pulse duration above perturbative intensities and consequently large dynamic alignment

during the pulse, implying that relative change of 〈cos2 θ〉 should therefore have a maximum

and become gradually smaller with increasing intensity. It appears that we have located this
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(a)

10.80.60.40.200.20.40.60.81

(b)

10.80.60.40.200.20.40.60.81

Figure 4.6 Franck-Condon averaged TDBOR angular distribution for dissociation in (a) 135 and
(b) 10 fs pulses at I=1013 W/cm2. Red solid lines denote distribution at tf ; and blue dashed lines,
at t→∞. Figure is adapted from Ref. [5].

maximum value at laser peak intensity of 7×1013 W/cm2. Of course, at higher intensities,

the competing process of ionization will become increasingly important, and we do not know

what its impact will be. We can conclude, though, that the axial recoil approximation is

breaking down for dissociation of H+
2 in 10 fs laser pulses.

To better visualize the post-pulse alignment, it helps to study the full angular distribu-

tions rather than just their width via 〈cos2 θ〉. So, we show in Fig. 4.6 angular distributions

at tf and t→∞ for 1013 W/cm2. It is evident from Fig. 4.6(a) that the fragments from dis-

sociating H+
2 in a 135 fs laser come out very aligned and do not rotate appreciably as they

head towards the detector. The 10 fs distribution in Fig. 4.6(b), whose 〈cos2 θ〉 increased

by 4% after the pulse, does show visible post-pulse narrowing.

Qualitatively, the tf and t→∞ distributions in Fig. 4.6 are similar, even for the 10 fs

pulse. Is it possible, then, to find qualitatively different tf and t→∞ angular distributions?

The answer is yes, and a few examples are shown in Fig. 4.7. Fig. 4.7(a) and 4.7(b) compare

the distributions for a 10 fs pulse at these two times for higher intensities where the effect

is more dramatic as is suggested by Fig. 4.5. If the tf and t→∞ angular distributions were

both experimentally measurable, it would certainly be possible to distinguish them. Even

more dramatic is the comparison between Fig. 4.7(b) and Fig. 4.3(b). The red curve in

both cases is the same, showing that the TDBOA calculations certainly cannot be used to

predict the angular distributions at the detector for 1014 W/cm2.

We also compare in Fig. 4.7 the results for a 5 fs laser pulse to see if nuclear rotation could

possibly be important for such a short pulses. Note that although the physical observables
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5 × 1013 W/cm2 1 × 1014 W/cm2
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(c) (d)

Figure 4.7 Franck-Condon averaged TDBOR angular distribution for dissociation. Red solid lines
denote distribution at tf ; and blue dashed lines, at t→∞. Figure is adapted from Ref. [5].

generally show some dependence on the carrier-envelope phase for such short pulses [44], we

show results only for zero carrier-envelope phase. For comparison, 〈cos2 θ〉 for Fig. 4.7(c)

and 4.7(d) at tf is 0.531 and 0.576, respectively. While these values are smaller than for

the corresponding 10 fs angular distributions, the relative post-pulse changes in 〈cos2 θ〉 of

10.5% and 12.3%, respectively, are higher than for the 10 fs pulse, continuing the trend

already observed. Fig. 4.7 shows, however, that their post-pulse evolution is quite different

and that the angular distribution does not look as sharply aligned. Moreover, structure has

developed in the angular distribution in Fig. 4.7(d).

4.4 Summary

We have studied the dynamics of the angular distribution of p+H fragments following intense

field dissociation of H+
2 both during and after the laser pulse. We found significant dynamic

alignment during 135 fs pulses, but little rotation after the pulse. We also found that

geometric alignment dominates during 10 fs pulses of moderate intensity, but the molecules

can rotate considerably after the pulse. Consequently, the axial recoil approximation appears

to hold best for pulses on the order of 135 fs or longer. Also consequently — and contrary to

the assumptions in most work in this field — nuclear rotation must be included to correctly

predict even qualitatively the angular distribution of H+
2 dissociation in short pulses.
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Chapter 5

Ro-vibrational revival structure of H+
2

in short laser pulses

5.1 Introduction

Ongoing advancements in laser technology have enabled experimentalists to uncover dynam-

ics of chemical reactions involving atoms and molecules. Some molecular phenomena, such

as high-harmonic generation and above threshold ionization, depend strongly on molecular

alignment and orientation [67, 69, 102, 103]. These findings have led to a greater interest

in studying laser induced alignment and orientation of molecules. Recently, alignment has

become an important first step in different experimental schemes, e.g. tomographic imaging

of molecules using high harmonic generation [104, 105].

Alignment of molecules can mostly be obtained using two methods, namely adiabatic

or non-adiabatic alignment. Adiabatic alignment is obtained by slowly ramping up the

laser field followed by a slow turn-off with pulse durations greatly exceeding the rotational

period. Maximum alignment can only be obtained at the peak of the field. Despite the

drawback of the presence of the field for some alignment experiments, a much higher degree

of alignment can be achieved adiabatically [106]. In contrast, for non-adiabatic alignment,

a laser pulse shorter than the rotational period of the molecule creates a coherent rotational

wave packet towards the peak of the field, which then evolves and revives at multiples of

1/2B, where B = 1/2µR2
0 is the rotational constant, µ is the reduced mass of the molecule,
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and R0 is the equilibrium distance between nuclei [21, 107, 108]. Non-adiabatic alignment is

a useful way to get a field-free aligned distribution of the molecules, although the degree of

alignment can be smaller than in the adiabatic case. Numerous experimental and theoretical

studies have been conducted for rotational revivals of the neutral molecules and references

there in [101]. A comprehensive review about revivals in general can be found in Ref. [109].

There is also a renewed interest in using both adiabatic and non-adiabatic methods to align

molecules [110–117]. Many studies cover the topic of optimally controlling and enhancing

the alignment by the combination of pulses, pulse shaping or thermally cooling the target

molecules [111, 118, 119]. Alignment of molecules is a commonly studied area of research

and almost a separate sub-field, thus it is difficult to overview many previous studies.

Alignment in heteronuclear molecules occurs due to the interaction of the permanent

dipole moment and induced polarizability which results from the change in electronic distri-

bution caused by the field. For homonuclear molecules, it is mostly the induced polarizability

that causes alignment. Induced polarizability is small for the simplest H2 molecule (2.8 a.u.)

compared to other molecules such as N2 (7.43 a.u.). H2 is difficult to align because of its

small induced polarizability. Only recently some experimental studies have observed non-

adiabatic alignment of H2 and D2 [120, 121]. Revival structure has not been reported for

H+
2 .

While revival structure has been studied and widely understood for neutral molecules,

little is known about the rotational revivals of molecular ions. We don’t expect neutral ionic

rotational revivals to behave differently for a single vibrational state of molecules. However,

in molecules like H+
2 , a broad initial vibrational state distribution can change the behavior

because of the correlated vibrational and rotation motion. H+
2 produced in an ion-source

has broad initial vibrational and rotational distributions with typical thermal temperature

up to 400 K. Our discussion will be focused on the rotational revival structure of H+
2 , and

thus rovibrational correlation is important. The role of correlation between rotational and

vibrational motion has previously been studied for rotational revivals of Na2 molecules [122].
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The findings here are somewhat different from Ref. [122]. No half- or quarter-revivals were

predicted for rotational revivals of Na2 molecules in Ref. [122]. In our results, both quarter-

and half-revivals can be observed in some cases along with full revivals at about 4 ps. The

revival time of 4 ps is much longer than the expected revival time of 1/2B. It was also

shown in Ref. [122] that the correlation between rotational and vibrational motion makes

the revival time much longer than 1/2B, however their method to estimate revival time does

not reproduce 4 ps for H+
2 .

Our focus for this work was to present an understanding of the rotational dynamics of

the H+
2 bound wave function during and after its interaction with the short laser pulses

by studying 〈cos2 θ〉. For this purpose, a systematic study has been conducted with laser

peak intensities for 10 and 135 fs pulses. The results are only Franck-Condon averaged

over incoherent initial vibrational states distribution. The results show a clear signature of

rotational revivals in 〈cos2 θ〉 with time. Experimentally observing revivals for molecular

ions is challenging. A pump-probe study would be necessary to observe the rotational

revivals, first by launching a coherent angular wave packet by the pump pulse which later

on is monitored by the probe. Starting from H+
2 ion-beam experiment [15], would be a

clean experiment to observe these revivals. A neutral target as in a gas-jet experiment

makes it difficult to observe H+
2 revivals. Fragments from double ionization of H2 and single

ionization of the H+
2 have the same kinetic energy, and the signal for the former would be

much bigger than the latter. Because of this overlap in the kinetic energy, it becomes very

difficult to separately observe H+
2 rotational dynamics [121]. Pump-probe studies, however,

have never been performed in an ion beam experiment.

While discussing rotational revivals of H+
2 , we can also address some questions by looking

into the dynamics 〈cos2 θ(t)〉 for bound wave functions. One question is “does only the

aligned part of the bound distribution dissociate”, thus burning a hole in the initial angular

distribution. Another question about the angular distribution of the molecule is “Is the

angular distribution always aligned along the laser polarization at the end of the pulse”.
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5.2 Origin of rotational revival structure

Since, thermal averaging affects the revival structure, I will briefly discuss it in this chapter.

In this chapter, all the calculations are performed using the TDBOR method described

in Sec. 2.2.1. The major analysis we performed is the calculation of 〈cos2 θ〉. For the

discussion presented in this chapter, we calculate FC-averaged 〈cos2 θ〉. We will call FC

averaged 〈cos2 θ〉 simply 〈cos2 θ〉, and will use 〈cos2 θ〉v for each initial vibrational state

v. Detailed derivations of 〈cos2〉v and 〈cos2 θ〉 have already appeared in Sec. 2.3.5. For

the results presented in this chapter, we have used zero initial J and M and performed

calculations for all the bound vibrational states in the 1sσg channel to do FC-averaging.

5.2 Origin of rotational revival structure

Figure 5.1 shows rotational revival structure (RRS) for H+
2 . Rotational revival appears at

∼ 4 ps measured from the peak of the laser pulse. The effect of correlated rotational and

vibrational motion on the RRS has been studied in Ref. [122]. The revival time (Trev) was

predicted for a rovibrationally hot wave-packet in an excited state of the Na2 molecule. The

prediction for Trev in Ref. [122] is based on a model Morse potential for the Na2 molecule.

We, however, could not reproduce the RRS time for H+
2 using this model. We see from

Fig. 5.1 that 〈cos2 θ〉(t) has a fast oscillation under a slowly varying envelop and after

two significant clean revivals the slow envelope starts damping. This is a typical behavior

of quantum mechanical revivals since the phase relation between different states in wave

function becomes random at very long times and then loses coherence making the revivals

smaller [109].

How does the rotational revival originate? To answer this question, it is important to

look to each vibrational component separately. In Fig. 5.2, the left panel shows 〈cos2 θ〉v(t),

defined in Eq. (2.32), for every other v, together making up more than 90% of the FC wave

packet. The right panel of Fig. 5.2 shows Qv(t), defined as

Qv(t) =

∑v
v′=0 fvPv′B(t)〈cos2〉v′(t)
∑v

v′=0 fv′Pv′B(t)
(5.1)

We see from Fig. 5.2(a)-(c) the beating of a single frequency that corresponds to the energy
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Figure 5.1 Rotational revival structure for H+
2 ; I= 1013 W/cm2; τFWHM = 10 fs; λ = 785 nm.

difference between J = 0 and J = 2 rotational states for the corresponding vibrational

states. If we picture populating many J ′s as climbing a ladder, from J = 0 to 1, from 1 to 0

and 2, from 2 to 1 and 3, and so on, then the states close to one photon resonance can have

broader angular momentum distributions than the ones far from it. To climb up the ladder

of J in the 1sσg channel, electronic transitions in many Js in 2pσu are necessary. For the

laser parameters in Fig. 5.2, we used only two electronic channels in the calculations, namely

1sσg and 2pσu. For initial J = 0, 1sσg has only even and 2pσu has only odd partial waves.

Vibrational states v = 0, 2, and 4 are deeply bound, thus a short weak laser pulse seems

to populate a single excited rotational level and its population grows with v, making the

amplitude of the beating frequency larger as v increases. However, as the v becomes closer

to the one photon channel opening, more frequencies start contributing, and we can see the

distorted beating pattern of the single frequency as in the case of Figs. 5.2(d) and (e). We

see noisy structure in 〈cos2 θ〉(t) for v = 10, as shown in Fig. 5.2(f) as the J-distribution

becomes broad with many high Js having comparable contributions.

The right panel of Fig. 5.2 shows the development of RRS for a FC wave packet of H+
2

as we keep accumulating vibrational states starting from v = 0 to v = 10. Figures 5.2(a)

and 5.2(g) are the same. We can explain the RRS of H+
2 as the cumulative sum of beating

frequencies from all individual vibrational states as evident from Figs. 5.2(h-l). The addition
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Figure 5.2 Left panel shows Eq. (5.2) for v = 0, 2, 4, 6, 8 and 10. Right panel shows Eq. (5.1).
I= 1013 W/cm2, τFWHM = 10 fs, and λ = 785 nm.

76



5.3 Effect of laser peak intensity on rotational revivals

of different frequencies results in a revival period of about 4 ps for H+
2 . Even though the

vibrational state results are added incoherently, the fact that each result is a sinusoidal

oscillation leads to the interference. While eliminating all the vibrational states except the

lowest three right panels will not change this time significantly (see Fig. 5.2(h)), the RRS

will not be very clear. If the bound wave function of H+
2 contains only lower vibrational

states (in particular 0–5), the RRS will have a beating frequency closer to that of the lowest

v with some modulation between revivals. The rotational revival structure will also not

have any fractional revivals, which can be seen in Figs. 5.2(k) and 5.2(l) after including v

up to 10. Moreover, large amplitudes for high-lying individual vs of 〈cos2 θ〉v translate into

the large amplitude of RRS after performing FC averaging and also increase the averaged

alignment. So, we can clearly state two significant features of RRS as, (i) for moderate

intensities, low lying vibrational states (0-5) give a RRS with relatively small amplitude

and no fractional revivals, and (ii) vibrational states from 6 to 12 contribute significantly

to the RRS amplitude, making it localized in time and also giving fractional revivals.

5.3 Effect of laser peak intensity on rotational revivals

For observing any physical phenomenon involving atoms and molecules with intense laser

pulses, it is always crucial to see the effect of laser peak intensity on that process. To be an

observable the effect should survive focal volume averaging of the laser spatial distribution

in an experiment [69]. Thus, the question arises, how can laser peak intensity effect RRS?.

Moreover, as some physical phenomena can change dramatically with pulse duration e.g.

carrier-envelope phase effects, the axial recoil approximation, and above-threshold dissocia-

tion [4, 5][44], it would be useful to discuss the intensity dependence of RRS for two distinct

pulse lengths, namely 10 fs and 135 fs.
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5.3 Effect of laser peak intensity on rotational revivals

5.3.1 Rotational revival structure for 10 fs pulse

To study the intensity dependence of RRS for a 10 fs pulse, in Fig. 5.3, it is plotted for

many intensities. Figure 5.3 shows that the RRS amplitude increases with laser peak in-

tensity I and the averaged alignment shifts slightly to higher values. The first two terms of
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Figure 5.3 RRS for different intensities. Intensity ranges from 2× 1013 to 1013 W/cm2 with each
line representing a single I in an ascending order from down with lowest I to up. τFWHM = 10 fs,

λ = 785 nm.

Eq. (2.32) the averaged alignment, and the last term is responsible for the RRS amplitude.

For completeness I rewrite Eq. (2.32) here

〈cos2 θ〉v(t) =
1

3PBv(t)

[

PBv(t) + 2(−1)M
∑

J

(2J + 1)
∑

v′

|aJv′(t)|2

+ 4(−1)M
∑

J

√

(2J + 3)(2J + 1)

(

J + 2 2 J
−M 0 M

)(

J + 2 2 J
0 0 0

)

×
∑

v′v′′

〈χJ+2v′′|χJv′〉Re
(

a∗J+2v′′(t)aJv′(t)
)

]

(5.2)

and 〈cos2 θ〉 from Eq. (2.31)

〈cos2 θ〉(t) =
1

PB(t)

∑

v

fvPBv(t)〈cos2 θ〉v(t). (5.3)

It follows from Eq. (5.2) that a higher PBv and/or a broader J-distribution will result in a

larger averaged alignment and a large RSS amplitude. Note that PBv in the denominator of
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5.3 Effect of laser peak intensity on rotational revivals

Eq. (5.2) will be cancelled when we renormalize it to calculate 〈cos2 θ〉. Figures 5.4(a) and

5.4(b) show the distribution of highest J with population probability ≥ 10−7 (Jmax) and

PB as a function of v and I for a 10 fs pulse, respectively. Figures 5.4(a) and 5.4(b) show

that both Jmax and PB for low lying v (0–5) are not affected significantly for the range of

intensities considered. This implies that high lying v (mostly 6–12) are responsible for the

dependence of RRS on I in Fig. 5.3.

We should be careful about our interpretation of the phenomenon because we notice

from Figs. 5.4(a) and 5.4(b) that while Jmax increases with I for v = 6 to v = 12, PBv

decreases for these vibrational states. To have a significant effect on RRS, PB should not

decrease faster than the increase in Jmax. There is a competition between populating more

J ’s and becoming depleted. This has been discussed in Sec. 4.2, that dynamical alignment

(alignment of the bound wave function during the pulse) is large for the vibrational states

away from the maximum of the one photon channel opening, i.e. all the states from v = 6 to

12 except v = 9 will first align in the field and then dissociate. This dissociation probability

depends on the pulse duration. So, for a pulse significantly shorter than the rotational

period, a certain v will become more aligned compared to being depleted. This is the reason

that we see an increase in RRS amplitude and averaged alignment for a 10 fs pulse.
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Figure 5.4 (a) Distribution of Jmax (highest occupied J with probability ≥ 10−7) vs v and I ; (b)
PB for 10 fs for each v and as a function of I .

Another important question is whether the individual peaks shift with I in RRS. The

peak shift, however, is negligible with I as shown in Fig. 5.3. This is somewhat surprising. to
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5.3 Effect of laser peak intensity on rotational revivals

see a very small. The origin of the intensity dependent shift in RRS peaks can be explained

as follows. Rotational revival structure appears as a result of constructive interference in

〈cos2 θ〉 between different rovibrational states contributing to the bound population of the

molecule. Thus the phase of the amplitude for each rovibrational state is important. The

phase accumulated depends upon the time during the laser pulse that a certain level becomes

populated. For example, a certain component of the bound wave function can only become

populated at 1012 W/cm2 which occurs at t = 0 for I = 1012 W/cm2. However, the same

component would become populated at a much earlier time for I = 1013 W/cm2 and hence

the time for constructive interference for the component with other components will change.

In addition, the shift in peak positions of RRS can depend on the FWHM of the laser pulse.

As for a 10 fs pulse, while the time is different to populate a certain state for different I’s,

it may be just 3 to 7 fs which is not big compared to the fast oscillation in RRS with a

frequency of about 200 fs. Since the field envelope varies slowly, a long pulse might make a

larger shift. To this end, we have performed calculations using 135 fs pulses and the results

will be discussed in the following section.

5.3.2 Rotational revival structure for a 135 fs pulse

We have performed several calculations using a 135 fs laser pulse for the range of intensities

as in the case of 10 fs. The RRS’s for a 135 fs pulse for several I’s have been shown in

Fig. 5.5. I will first complete the discussion of drift in peak positions of RRS with I and

then will return to comment on general features of RRS for a long pulse of 135 fs. Figure 5.5

shows that peak positions, indeed, drift away from each other as a function of I. This can

be seen for the peak at about 0.4 ps for 1013 W/cm2. More clearly, the drift can be observed

in Fig. 5.6(a). Figures 5.5 and 5.6(a) show that the RRS peaks drift towards longer time as

a function of I. This can be explained again considering the fact that to be able to interfere

constructively, a certain amount of phase has to be accumulated for the amplitude of each

rovibrational state. The later in the pulse a state gets populated, the longer it will take
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τFWHM = 135 fs, λ = 785 nm.

to accumulate the phase required to interfere constructively. It is remarkable that after

becoming completely off in position from each other, the RRS peaks reappear at about 3.9

ps with negligible difference in positions with intensity. We can summarize the main features
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Figure 5.7 (a) same as Fig. 5.4(a) and (b) same as Fig. 5.4(b) for τFWHM = 135 fs.

of RRS for 135 fs pulse as follows. Averaged alignment and amplitude for RRS increase

with I indicating broader J-distribution. The distribution of Jmax vs. v and I is shown in

Fig. 5.7(a). Figure 5.7 shows that a 135 fs pulse can populate many J ’s for low lying v′s

(from 0 to 5) as well compared to 10 fs pulse. For even the lowest I plotted, the RRS looks

similar to Fig. 5.2(j), i.e. no half revivals and < cos2 θ > oscillates with smaller amplitudes

between RRS. For higher intensities, the RRS becomes more like Fig. 5.2(i) which does not

contain any component from v > 4, and thus indicates small PB for v > 5. Figure 5.7(b)

shows PBv and supports the evidence.

There is another interesting feature of the RRS that can be seen clearly for 135 fs.

Figures 5.5 and 5.6(a) show that the amplitude for the first peak of the RRS is significantly

larger than the second peak and the peaks at the revival time. The first two peaks of the

RRS (see Fig. 5.5) appear during the pulse fora 135 fs laser pulse. The question arises, what

is the origin of this dramatic decrease in amplitude from the first to the second peak and

later peaks? The reason is rather simple and quite intuitive. The states become aligned at

about t = 0, and then dissociate leaving behind less aligned states. The depletion of the

aligned states makes RRS amplitude small and also lowers the contrast in 〈cos2 θ〉 between

the RRS and when the population becomes dephased. Figure 5.6(b) shows the survival

probability of the molecule, PB(t). We see from Figs. 5.6(a) and 5.6(b) that as PB becomes

small with I, the contrast between the amplitudes of the first two peaks becomes large.
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5.4 Pulse length effect

Comparing Figs. 5.3 and 5.5, we find that the RRS features do not change significantly

over the range of I plotted for 10 fs compared to 135 fs pulse. The reason is that PBv does

not change dramatically for 10 fs with I, while for 135 fs high lying v’s change from almost

bound to completely depleted for the same range of peak intensity. To clarify this point, we

plot the relative population of these states to the total bound probability PB for a FC wave

packet as a function I for both 10 and 135 fs laser pulses in Fig. 5.8. Figure 5.8 shows that
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Figure 5.8 Ratio of bound probability for v = 7 to v = 19 to PB for 10 fs and 135 fs laser pulses.

while the ratio is not very different at the lowest I (12% for 135 fs and 13.5% for 10 fs), it

decreases to less than 1% for 135 fs, while staying still quite large about 9% for 10 fs at the

highest I. Therefore, the RRS for the 10 fs pulse remains unaffected compared to that of

135 fs for intensities ranging from 1012 to 1013 W/cm2.

5.4 Pulse length effect

Mostly, intensity and pulse length dependencies of RRS features have already been covered

in previous sections. It will, however, be interesting to see the crossover of the RRS from

being like Fig. 5.2(l) to Fig. 5.2(i) as the pulse length increases. Moreover, we can also try

to estimate at approximately which pulse duration the amplitude at the first peak of the

RRS becomes significantly larger than the subsequent peaks indicating the depletion of high

lying vibrational states in the trailing part of the pulse. To observe this behavior, we have

performed many calculations for pulse lengths ranging from 10 fs to 135 fs. Figure 5.9 shows

fractional (half) revivals for both 45 and 60 fs pulses. As the pulse length becomes 90 fs,
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Figure 5.9 Rotational revival structure for four different pulse lengths as indicated at fixed I =
1013 W/cm2.

however, the RRS looks more like Fig. 5.2(j). So, the crossover between the two behaviors

of the RRS will lie between 60 and 90 fs pulses for I = 1013 W/cm2. Moreover, the J-

distribution becomes broader with pulse length, giving higher alignment at the RRS peaks

as the pulse length increases from 45 fs to 90 fs. The depletion, however, also increases with

pulse length, which finally results in a smaller RRS amplitude for 135 fs at the revival time.

So, the depletion overrides alignment for pulses between 90 and 135 fs.

5.5 Concluding remarks

We have presented rotational revival structures for a range of laser peak intensities and pulse

lengths for an initial incoherent vibrational wave packet with J = 0 of H+
2 . We found that

for a broad range of I and pulse lengths, rotational revivals occur more or less at the same

time of 4 ps. This time is characteristic of the molecule. We interpret the RRS for H+
2 as

the cumulative sum of frequencies from each v, and it gets affected by the depletion of high

lying v′s. Individual v′s will exhibit rotational revival similar to neutral molecules if placed
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in an intense laser pulse producing broad J-distribution. Long weak pulses can be useful to

obtain a high degree of field-free alignment at rotational revivals by a broad J-distribution

and to prohibit depletion of high lying vibrational states. Our study shows that intensity-

averaging will not washout revivals. Field-free alignment at revivals is maximum for a 60 fs

pulse.
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Chapter 6

Kinetic-energy release and angular
distributions

6.1 Introduction

After examining the limitations of the aligned model calculations in detail in chapters 3 and

4, we are convinced that to study the behavior of H+
2 dissociation by laser pulses of any

pulse duration, it would be better to perform all the necessary calculations including nuclear

rotation. Apart from comparing results with existing models, another more important aspect

to theoretical study is to make connections with experimental results. An experimental

observable for H+
2 dissociation is the momentum distribution of p+H. Other observables like

angular and kinetic energy release (KER) distributions can be extracted from the momentum

distribution. Our study closely relates to an ion-beam experiment performed by Prof. I. Ben-

Itzhak and coworkers [15]. A few other groups have also performed experiments involving the

interaction of an H+
2 ion-beam with laser pulses [35, 123–125]. A majority of the experiments,

however, start from a neutral H2 target in a gas jet [126, 127]. Only recently, while using

enormous computing resources, theoretical studies have become possible for the H2 molecule

including nuclear vibration and single ionization that would lead to the dissociation of

H+
2 [128]. In most studies, in order to mimic H2 ionization, a coherent Franck-Condon

wavepacket is launched onto the H+
2 1sσg channel using the sudden approximation close to

the peak of the laser field. This, however, is only an approximation, and thus there is an
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ambiguity about preparing the initial state in H+
2 from single ionization of H2 in a gas jet

experiment. Despite the difficulty in performing an accurate theoretical study, and hence

making a direct comparison with the experiment, a neutral target offers a high density target,

and all the charged fragments and electron can be detected efficiently using cold-target recoil

ion momentum spectroscopy [127, 129]. Gas jet experiments also have additional drawbacks

compared to ion beam experiments. There is a clear two-fold advantage of an ion-beam

experiment over a gas jet experiment when it comes to getting complete information for

H+
2 dissociation by laser pulses. First, it starts with H+

2 rather than H2 and, therefore,

removes ambiguity about the ionization time of H2 in a pulse. Second, in contrast to a gas

jet experiment where only the proton can be detected, here both neutrals (H) and ions (p)

can be detected in coincidence giving complete information about the dissociation.

So, we take advantage of the availability of experimental results and make a comparison

with our results. This leads to a better interpretation and understating of the physics behind

different dissociation processes. Specifically, we have performed an extensive study of H+
2

dissociation in short laser pulses ranging from 5 to 135 fs and compared our results with

the experiment for a number of phenomena such as vibrational suppression, zero-photon

dissociation (0ω), bond-softening (1ω), and above-threshold dissociation (2ω and 3ω)1. It

is, however, not always trivial to obtain an experimental observable in a theoretical study.

For that, we have developed a careful analysis to obtain the momentum distribution of p+H

as explained in Sec. 2.3.7.

6.2 H+
2 dissociation: Diabatic Floquet-representation

to understand KER distribution

Before looking into the specific details of the KER distribution of H+
2 dissociation for different

laser parameters, its behavior can be predicted by looking at the lowest two potential curves

of H+
2 in the diabatic Floquet-representation as described in Sec. 1.3. Many dissociation

1The terminology developed for different dissociation processes in Sec. 1.3 will be used.
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processes contribute to the KER distribution. From Eq. (2.50), dP/dE is

dP

dE
=
∑

L even

|aL+(E)|2 +
∑

L odd

|aL−(E)|2. (6.1)

Using the above expression, we can calculate dP/dE for each initial vibrational state v

((dP/dE)v), and the FC-averaged KER distribution will be :

dP

dE
=
∑

v

fv

(

dP

dE

)

v

. (6.2)

Thus, the total KER-distribution is an incoherent sum of all channels for each v and then

a coherent sum of all initial vibrational states.

We have categorized different dissociation processes from their final states as 0ω, 1ω, net-

1ω, 2ω and 3ω2. Figure 6.1(a) shows the location of 0ω, 1ω, net- 1ω, 2ω and 3ω FC-averaged

KER peaks relative to the thresholds. The individual peaks are then combined into the total

KER-distribution in Fig. 6.1(b). The widths of individual KER peaks in Fig. 6.1 roughly

indicate the v-range contributing to different dissociation processes. For example, v = 9 is

at the one-photon crossing and dissociates by 1ω, however, v = 7–11 can also contribute

significantly to 1ω dissociation. The net-1ω peak, however, comes from lower vibrational

states such as v = 2, 3, 4. Since 1ω and net-1ω contribute to the same energy, it is hard to

distinguish between them in the FC-averaged KER-distribution. However, by looking into

the individual channels for each v, the net-1ω KER peak can be identified.

Similar to v = 7—11 for 1ω, v = 2, 3, 4 are most likely to contribute to 2ω and 3ω KER

peaks. Finally, for 0ω, v > 12 can make the transition to 2pσu − 1ω and then to 1sσg − 0ω,

which should make all the population bound again. However, the bandwidth of the laser

can put the tail of this distribution into the continuum. So, there are two reasons for the

broadening of each peak: the contribution of many vibrational states, and the bandwidth

of the laser.

The peak positions, obtained from the difference of field-free vibrational energy levels

and thresholds, are only approximate as the oscillating electric field causes AC Stark shifts

2 For their correspondence to commonly used terms see Sec. 1.3
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Figure 6.1 (a) Diabatic Floquet potentials with individual FC-averaged 0ω to 1ω KER peaks
plotted relative to their respective thresholds. (b) The FC-averaged KER distribution as it will

appear on a detector to emphasize the overlap of different dissociation processes from different
initial vibrational states overlapping in energy. I = 3 × 1013 W/cm2 and τFWHM =10 fs.
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6.3 1ω dissociation

of the levels and alters their positions. For example, the energy difference between the 2ω

and 3ω peaks is not equal to ω, and this can be attributed to the AC Stark shift. This will

become clearer in the following sections. According to perturbation theory, peak heights for

different above-threshold ionization peaks in the photoelectron spectrum are proportional

to In, where n represents the photon number. Figure 6.1 shows, however, a somewhat

complicated trend for many photon peaks in H+
2 dissociation. We see from Fig. 6.1 that

0ω (a two-photon process as it occurs by absorbing and emitting one photon) is an oder of

magnitude larger than 2ω. The reason is that the latter is not a direct two-photon process,

but depends on the initiation of 3ω, which makes it a higher-order process. Moreover, once

the 3ω can occur, strong coupling between 1sσg and 2pσu forces the transition at the two-

photon crossing back to the 1sσg − 2ω channel, further decreasing the 3ω peak by an order

of magnitude.

In the following subsections, I will briefly describe the behavior of different photon

processes with peak intensity and pulse duration. My focus is to look at some of the

individual vibrational states in each case.

6.3 1ω dissociation

For a Ti:Sapphire laser with a 785 nm wavelength, the dominant contribution to the dissoci-

ation of H+
2 would be from 1ω dissociation. All the states with Ev +ω−U(R → ∞) > 0 will

contribute to 1ω dissociation. Here, I will describe the behavior of the KER and angular

distributions for v = 8, 9, and 10, which lie closer to the one-photon crossing than all other

vibrational states.

6.3.1 Kinetic-energy release distribution

The ninth vibrational state of H+
2 is at the 1ω resonance with the Ti:Sapphire laser frequency,

giving the dominant contribution to 1ω dissociation. One-photon resonance means v = 9

lies at the 1ω crossing of the field-dressed 1sσg and 2pσu potential curves. The coupling
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Figure 6.2 Density plots for dP/dE vs I for v = 8, 9, and 10 from top to bottom. The gray
vertical line in each panel indicates the 1ω peak position calculated from the field-free energy level
(Ev). τFWHM = 10 fs.

between two channels is strongest at their crossing. The estimated values for the KER peak

positions for v = 8, 9, 10 are 0.68, 0.83, and 0.97 eV respectively. From Fig. 6.2, we can

clearly see that v = 9, 10 start dissociating with the expected KER and show a nice single

peak without much deviation from the expected KER up to I ∼ 1013 W/cm2. In contrast,

v = 8 always dissociates with higher KER. This is somewhat surprising, because even in

the adiabatic representation of field-dressed potentials, vibrational levels would only shift to

lower energies for energy levels below the one-photon crossing and thus give smaller energy
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6.3 1ω dissociation

for v = 8. For all vibrational states, the KER distribution shows rich complicated structure

for higher intensities, as the single peak fans out into several peaks distributed in high and

low KER. The dominant peaks for v = 8 and 9 move towards higher KER, but for v = 9

the shift is not very large.

6.3.2 Angular distribution (AD)

Another interesting question is “Can we predict the angular distribution (AD) of 1ω dissoci-

ation?” A common answer is that the parallel component of the field for a linearly polarized

laser is responsible for the dissociation. So, for short pulses, the molecule at an angle θ sees

an effective peak intensity Ieff = I cos2 θ, giving a cos2 θ AD3. Some discussion about AD

has already been included in Chap.4 to check the validity of the axial-recoil approximation,

and also a comparison was done with an effective-field model for the FC-averaged AD. Here,

the main focus is to study AD for individual v’s, as the total AD contains contributions

from multiphoton dissociative pathways from all vibrational states, which are not expected

to behave like cos2 θ.

According to perturbation theory, dP/dθ ∝ cos2n θ, in an analogy to multiphoton ion-

ization of atoms, where the ionization probability is ∝ In for an n-photon ionization [36]. In

our theoretical formulation in Sec. 2.3.7, we expect the AD to be a linear combination of all

populated partial waves after the field is off. This is valid independent of the laser parame-

ters. For example, an initial J = 0 in 1sσg, within first-order perturbation theory, can only

populate J = 1 in 2pσu to give dissociation (1ω), giving a cos2 θ AD, thus all models predict

cos2 θ AD for 1ω at lower intensities. Figure 6.3 shows the AD for v = 8, 9, 10 for three I’s4.

All vibrational states clearly show a cos2 θ-distribution for I = 1011 W/cm2. However, as

the I grows the AD significantly deviates from cos2 θ and especially for I = 1013 W/cm2 the

interference of many partial waves gives a very complicated AD structure. I should mention

that these v’s populate up to 18 J ’s for I = 1013 W/cm2. It would be hard to interpret

3In this chapter θ ≡ θK
4All angular distributions shownd are renormalized to unit peak position
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Figure 6.3 dP/dθ for selected I for v = 8, 9, and 10 from top to bottom. τFWHM = 10 fs.

the AD for higher intensities, given that it already shows complexity for I = 1013 W/cm2,

where these v’s have well-defined 1ω peaks in KER (see Fig. 6.2). For well-defined 1ω peaks

in KER, we can expect a simple angular distribution, but it is evident from Fig. 6.3 that

this is not the case.

6.4 Net-1ω, 2ω and 3ω dissociation

Contrary to 1ω dissociation, net-1ω, 2ω and 3ω dissociation offer complexity in KER and

angular distributions by being not only multiphoton processes but also because these occur

through complex pathways in H+
2 potential curves. Similar to the previous section, to get

some insight, we will discuss the KER and angular distributions of v = 2, 3, and 4.
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Figure 6.4 Density plots for dP/dE vs I on log-scale for v = 2, 3, and 4 from top to bottom. In
each panel, a gray vertical line indicates 2ω and a black vertical line indicates 3ω peak positions
calculated from field-free energy levels (Ev). τFWHM = 10 fs.

6.4.1 Kinetic-energy release distribution

For all the intensities in our theoretical study, net-1ω, 2ω and 3ω dissociation remains small

in absolute numbers as evident from Fig. 6.4. At very low intensity, the 2ω and 3ω peaks

emerge with KER close to the expected value calculated using field-free Ev. However, we see

a curious large shift in the 2ω peak towards low KER with I as compared to the 3ω peak.

Figure 6.4 shows that the 3ω peak has a negligible shift with I. Similar to 1ω dissociation,

2ω also becomes broader with I. In this case, however, the spread in the low KER peak is
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Figure 6.5 KER distribution with for v = 3 from each channel; I = 5 ×1 013 W/cm2, τFWHM =
10 fs.

only partly from 2ω, as net-1ω also occurs with low KER (see Fig. 6.5)5. Net-1ω dissociation

emerges at very low KER and then shifts towards high KER with I. It becomes comparable

to the 2ω peak for I > 4 × 1013 W/cm2 for v = 4 making the low KER peak significantly

broader in this intensity range. Comparing Figs. 6.2 and 6.4, we find that the 2ω peak

shift with intensity is much larger than 1ω, and the peaks shift towards low KER, while

the 1ω peak shift is towards higher KER. This suggests that the emergence of low energy

contribution for a given I in the KER-cos θ plots would be because of the contribution from

2ω and does not represent a shift in the v = 8 1ω peak as described in Ref. [15].

Observing clear peaks in KER for 3ω dissociation of H+
2 is a non-trivial problem, in

contrast to above-threshold ionization peaks in the photoelectron spectrum for atomic ion-

ization. The major problem that prohibits this observation is the broad vibrational state

distribution, which can dissociate by different photon processes with similar KER, making

it impossible to distinguish between different peaks. Even for individual vibrational states,

2ω cannot be separated from net-1ω in an experiment6. The other important reason is the

dipole coupling between 1sσg and 2pσu channels at the two-photon crossing, which causes

a transition from the higher order 3ω dissociation to the lower order 2ω dissociation, thus

5Wiggles on the 3ω peaks are numerical and due to the choice of our grid as briefly mentioned in Sec. 2.5.
Using a more optimal grid removes these wiggles without changing the peak position and height significantly
(see Fig. C.2 for comparison).

6In a theoretical study, this is possible as the two processes occur in different electronic channels.
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suppressing the former. We can enhance 3ω dissociation by using either pulses shorter than

10 fs, or D+
2 [4]. Figure 6.6 shows clear enhancement of 3ω dissociation (from 2.5 to 3 eV)

with pulse duration.

5 fs
7 fs
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d
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/d
E

32.521.510.50

101

100

10−1

10−2

Figure 6.6 FC-averaged dP/dE for three different pulse lengths. I = 1014 W/cm2.

6.4.2 Angular distribution

Now, we will check whether or not the AD for 2ω and 3ω peaks follow a cos2n θ-distribution.

The AD for only the 2ω peak, however, cannot be obtained because it overlaps with the

net-1ω peak. From Eq. (2.49), we see that integration over energy does not eliminate the

coherence of different channels in the angular distribution. If there is no net-1ω, then

ρ(E, θ) can be regarded as an incoherent sum of 1sσg and 2pσu to a good approximation,

and the AD for both 2ω and 3ω peaks can be obtained from each channel respectively. The

presence of net-1ω makes ρ(E, θ) a coherent sum of the two channel’s contributions and

thus prohibits calculating AD for 2ω [see Eq. (2.49)]. It is this interference between 2ω

and net-1ω that leads to an up-down asymmetry (along the laser polarization) of the p+H

momentum distribution. This will be discussed in detail in Chap. 7. Angular distributions

for 3ω peaks are calculated by integrating ρ(E, θ) over E from 1.8, 2.0, and 2.2 eV to 4 eV

for v = 2, 3, and 4 respectively.

We do not see cos6 θ behavior for any AD plotted in Fig. 6.7. However, a surprising
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Figure 6.7 dP/dθ for selected I for v = 2, 3, and 4 from top to bottom; τFWHM = 10 fs.

cos4.3 θ fits the AD very well for I = 1013 W/cm2 for all v’s in Fig. 6.7. The angular

distribution for v = 2 becomes sharply aligned with increasing I, however it shows compli-

cated behavior with I for the other two cases. Besides the curious behavior of cos4.3 θ at

I = 1013 W/cm2, there is no simple interpretation of the shape of the AD for v = 2, 3, and

4. We can only say it is a linear combination of many partial waves contributing to the

dissociation. Our calculations show 19, 23, and 27 J ’s are populated for v = 2, 3, and 4,

respectively, for the highest I shown in Fig. 6.7.

6.5 0ω dissociation

Historically, Posthumus et al. used the phenomenon of 0ω dissociation to explain fragments

which dissociate with very low kinetic energy [58]. The interpretation was based on the
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vibrational trapping of the population in the well created in field-dressed adiabatic potential

curves, and then tipping over the population nonadiabatically on the rising edge of the pulse

(see Sec. 1.3 for more detail). In a recent study by Posthumus et al. [130], however, the

phenomenon known as resonance-enhanced multiphoton ionization is proposed instead for

the creation of low energy fragments. Note that both of these experiments start from the

neutral H2 molecule, and hence the dissociation of H+
2 takes place essentially after the single

ionization of H2 into H+
2 by the leading edge of the field. So, in their first study [58], the

possibility of multiphoton transitions to H2 excited states was not considered, however, in

the more recent experiment, it has been shown that transition of excited electronic states of

neutral H2 occurs and later the molecule can stretch and absorb another photon to dissociate

directly into the 2pσu channel of H+
2 with low KER [130].

Now, the question arises: “Does 0ω dissociation exist in H+
2 and how does it happen?”

To answer this question, a first important step would be to start the experiment from H+
2

rather than H2 to eliminate resonance-enhanced multiphoton ionization, that is, perform

an ion-beam experiment. The signature of 0ω dissociation would be the existence of very

low energy fragments. Experimental evidence for 0ω dissociation will come in Sec. 6.6.2.

Here I will briefly describe the behavior of individual vibrational states contributing to 0ω

specifically, the discussion will include v = 13, 14, and 15.

6.5.1 Kinetic-energy release distribution

Near 0 eV, a peak starts emerging first for v = 15 at about I = 5 × 1012 W/cm2, as this

vibrational state lies closer to the dissociation threshold. The other two vibrational states

contribute to 0ω at a relatively higher intensity of about I = 3× 1013 W/cm2 (see Fig. 6.8).

So, theoretical results show a clear signature of the presence of 0ω in H+
2 dissociation by

short laser pulses. Figure 6.8 also shows the 1ω peak for v = 13, 14, and 15. The One

photon peak for these vibrational states show similar behavior to that of v = 8, 9, and 10.

Pulse-length dependence of 0ω can be seen from Fig. 6.6. Because of the large bandwidth,
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Figure 6.8 Density plots for dP/dE vs I for v = 13, 14, and 15 from top to bottom. In each panel,
the gray vertical line indicates 1ω calculated from the field-free energy level (Ev). τFWHM = 10 fs.

shorter pulses give large 0ω dissociation.

6.5.2 Angular distribution

In this case, the AD can be expected to show cos4 θ behavior because it is a two-photon

(net zero-photon) process. Perturbatively, however, for an initial J = 0, the AD would

be at least a linear combination of two spherical harmonics Y00 and Y20. Clear separation

between the ZPD and 1ω peaks in the KER distribution enables us to calculate the AD

(see Fig. 6.8). Angular distributions for v = 13, 14, and 15 are obtained by integrating
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Figure 6.9 dP/dθ for selected I for v = 13, 14, and 15 from top to bottom. τFWHM = 10 fs.

ρ(E, θ) up to E = 0.4 eV. Figure 6.9 show ADs for v = 13, 14, and 15 corresponding to

the 0ω distribution. Angular distributions show complicated structure in almost all cases.

For v = 14 and 15, the AD’s have a large peak perpendicular to the laser polarization for

I = 3 × 1013 W/cm2 and 5 × 1013 W/cm2. Similar to previous cases, interference among

many partial waves would be responsible for the complex structure in angular distributions.

For I = 5×1013 W/cm2, 30, 29, and 28 J ’s are populated for v = 13, 14, and 15 respectively.

6.6 Qualitative comparison of theoretical and experi-

mental results

Here, I will first describe the experimental setup used in an ion-beam experiment. In a later

section, I will present a comparison of KER-cos θ plots and KER-distributions between
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Figure 6.10 Experimental set up for dissociation of H+
2 ion beam by laser pulses [15]. Figure is

adapted from Ref. [15].

theory and experiment.

6.6.1 Experimental geometry and spatial intensity distribution of

the pulse

As mentioned earlier, wherever possible, theoretical and experimental results are compared.

Experiments are performed by crossing the molecular ion beam with a laser pulse and

detecting both neutral and charged fragments in coincidence using a time and position

sensitive detector. Figure 6.10 shows the set up used in the experiment. Specific details

about the experimental techniques can be found in [15, 36, 79, 131].

Without going into further details of the experimental set up, I would like to mention an

important point about the geometry of this set up for the spatial distribution of the focused

laser pulse. In the experimental observation, all the molecules do not dissociate by the

laser peak intensity. Rather, a large fraction of the signal comes from the lower intensities

in the focal volume of the laser. So, to be able to have a meaningful comparison between

experiment and theory, theoretical results should be averaged over the focal volume of the

laser. The ion beam dimension helps somewhat with this averaging. For this case, instead
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of doing three-dimensional averaging, two-dimensional averaging would be sufficient [21].

Here, I describe some of the consequences of focal volume averaging: (i) the relative

signal for higher order ATD, which occurs only at higher intensities, compared to the 1ω

signal, becomes very small, (ii) the problem (i) can be compensated for by increasing I

to increase the effective volume for the higher intensities. However, this can cause H+
2

ionization, making theoretical study difficult as it is not included in our formulation (1014

W/cm2 is the limit for a 10 fs pulse), (iii) a trivial problem is that many calculations have

to be performed to do focal volume averaging which is not efficient compared to the time

for calculations at a single peak intensity.

To make reasonable comparisons with experiment, we have adopted two approaches:

• Perform focal volume averaging by using the following relation for any observable O(I)

O(I0) ∝
∫ I0

0

O(I)

I
dI (6.3)

The factors to remove the proportionality in the above expression [131–133] depend on

the focusing geometry and sometimes cannot be determined precisely in an experiment.

Moreover, these factors keep changing with the experiment and give just an overall

factor. Since the measurements are not absolute, these factors are not important.

• Sometimes, we made a choice to not do intensity averaging, but rather performed

calculations at somewhat lower intensity than the experiment assuming that the effect

of focal volume averaging is to merely change the effective peak intensity. While this

approach is not accurate, it requires many fewer calculations and can be very useful

to build qualitative understanding.

6.6.2 Experimental setup to detect near 0 eV fragments

In the experimental set up shown in Fig. 6.10, we can see that all the neutral fragments

with very low KER would strike the Faraday cup placed to catch the H+
2 ion beam. To

avoid this from happening, Ben-Itzhak and co-workers developed a new scheme to precisely
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Figure 6.11 The experimental set up to observe very low KER fragments in H+
2 dissociation.

Figure is adapted from Ref. [11].

observe very low energy fragments. This new setup is shown in Fig. 6.11 [11]. In this

setup, the H+
2 beam is deflected by applying a high voltage, thereby separating it from low

energy dissociating fragments. The scheme was successfully implemented to confirm 0ω

dissociation [11].

6.6.3 Experimental and theoretical results

Efforts are underway to perform quantitative comparison between experimental and theo-

retical results. This requires thermal averaging, convolution with respect to experimental

resolution, and a realistic pulse shape in addition to Franck-Condon and focal-volume aver-

aging. It would take about 500,000 cpu hours to do thermal averaging from J = 0 to 10, for

a 10 fs pulse and peak intensities up to 1014 W/cm2. We are in the process of doing such

calculations, but I will show here only the initial J = 0 results which we already have.

Figure 6.12 shows KER-cos θ plots for three peak intensities. Theoretical results shown

in Fig. 6.12 are intensity averaged to make them more comparable to the experiment. The

agreement between experiment and theory, though still qualitative, is remarkable. We see

a clear 1ω peak which starts developing an aligned “nose” at low KER with I, from the 1ω
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1013 W/cm2 middle row. In the bottom row intensity is 1014 W/cm2 for theoretical results, how-

ever, experimets has a different intensity of 4 × 1014 W/cm2; τFWHM = 10 fs. Figure is adapted
from Ref. [11].

dissociation of v = 5 and 6, and also the 2ω dissociation of v = 2, 3, and 4. The lowest

two vibrational levels have a negligible dissociation for these intensities. We can only see

a hint of a high KER tail in the KER-cos θ plots for the higher intensity of 1014 W/cm2,

as the focal volume averaging suppresses the signal from 3ω dissociation. Similar to our

earlier discussion, we see that at I = 1012 W/cm2 no zero energy fragments appear, and

then some fragments appear as a distinct peak with zero KER for a moderate intensity of

1013 W/cm2. For the highest intensity shown, zero KER and higher KER population can

no longer be distinguished as separate peaks, as the 2ω peak shifts significantly towards low

KER with I (see Fig. 6.4). Moreover, features like a broader AD for the 1ω peak at I = 1012

and 1013 W/cm2 and the narrowing of the peak with intensity also compare well between
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experiment and theory.

Figures 6.12(g)-(l) also shows KER distributions for different intensities after integrating

the density over all angles. Comparing KER distributions confirms the conclusions already

established for 1ω and ATD. Particularly, in Fig. 6.12(right panels), a zero energy peak can

be seen clearly in both experiment and theory.

6.6.4 Suppressed dissociation of H+
2 vibrational states by reduced

dipole coupling

The curious suppression in the dissociation of the twelveth vibrational state was briefly

discussed in Sec. 3.4. By looking into the dipole matrix elements Dv(E) for this state, we

found that the suppression results from a minimum in Dv(E) for KER=E12 + ω − UR→∞.

Dipole matrix elements show structure with KER for all vibrational states and, therefore,

suppression would occur for different vibrational states for different laser frequencies as

predicted from first-order time-dependent perturbation theory in Sec. 3.4.

In reality, many laser-molecule experiments are performed in the strong-field non-linear

(&1012 W/cm2) regime. Thus, for the predictions of perturbation theory to be useful they

must survive to high intensities. Since the dipole matrix elements determine the multi-

photon transition rates, this is expected. Nonetheless, to explore the robustness of the

dissociation suppression, we performed calculations for higher, non-perturbative intensities.

As ionization is omitted from the theory, we limit the intensities explored to below the onset

ionization.

Figure 6.13(a) shows the KER distribution of H+
2 (integrated over all angles) calculated

using our intense-field theory for 790 nm, 45 fs, 4×1012 W/cm2 pulses, after Franck-Condon

averaging. Distinct peaks are observed corresponding to one-photon dissociation of the

v states as indicated by the vibrational-comb ticks along the top of the plot, calculated

from the field-free vibrational energies. The corresponding (non-weighted) PD for each v

state is shown in Fig. 6.13(c) along with the perturbation theory calculation. Clearly, a

reduction in PD of v=12 with respect to the neighboring states is predicted by the intense-
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Figure 6.13 Calculated kinetic energy release (KER) distributions of H+
2 using 45 fs,

4×1012 W/cm2 pulses at (a) 790 nm, and (b) 395 nm. Vibrational comb ticks for one-photon
dissociation are shown along the top of the panels. The corresponding dissociation probabilities
PD are shown in (c) 790 nm and (d) 395 nm (solid points), as well as normalized perturbation

results (dashed lines). Figure is adapted from Ref. [12].

field calculation, with the perturbation result in good qualitative agreement. This v=12

suppression can also be found in the KER distribution in Fig. 6.13(a) by a dip (see arrow)

at the v=12 KER value (1.2 eV), and the magnitude of the dip suggests that it should be

measurable experimentally. Our calculations further reveal that the dissociation suppression

persists at intensities at least up to 1013 W/cm2 (the highest that we tested for 45 fs, and

1014 W/cm2 for 7 fs) — albeit gradually reducing in contrast — and thus survives intensity-

averaging due to the laser focal volume in an experiment. It is also present for all pulses

that we have explored in the range 5 – 170 fs. Moreover, since our calculations account for

nuclear rotation, these results show that this dissociation suppression is not washed out by

rotation, unlike intensity-dependent stabilization and dynamical dissociation quenching as

discussed in Chap. 3.

As a check to ensure that the dissociation suppression is also measurable at other

wavelengths, we repeated the calculations at 395 nm, the second-harmonic of a 790 nm

Ti:Sapphire laser. The KER distribution and PD results are shown in Figs. 6.13(b) and
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Figure 6.14 Experimental kinetic energy release (KER) distributions of H+
2 using 40 fs,

3×1013 W/cm2 pulses at (a) 790 nm, and (b) 395 nm. Vibrational comb ticks for one-photon
dissociation are shown along the top of the panels. Error bars denote the statistical uncertainty.
The corresponding relative dissociation probabilities PD are shown in (c) 790 nm and (d) 395 nm.
Error bars are a sampling estimate of the uncertainty from the fitting procedure. Figure is adapted

from Ref. [12].

6.13(d), respectively. Significant suppression is observed for v=7, 9 and 10, in agreement

with the perturbation calculation. As with 790 nm, these suppressions can be seen in the

KER distribution as amplitude dips at KER values of 2.1, 2.4 and 2.6 eV, respectively. Thus,

the suppression does indeed persist for other wavelengths as predicted in Sec. 3.4.

A crucial check of this dissociation suppression is if we can observe it in the laboratory.

For this purpose, McKenna and co-workers conducted the experiment for H+
2 dissociation

using the setup described in Sec. 3.4. The measured KER dissociation spectra of H+
2 using

40 fs, 3×1013 W/cm2 pulses at 790 nm and 395 nm are shown in Figs. 6.14(a) and 6.14(b),

respectively. The spectra are plotted for a ±37◦ angular cut along the laser polarization

to help reduce the effects of intensity-averaging. Reasonably well resolved structures are

observed at both wavelengths. The resolution is mostly limited by the position-sensitive

detector (delay-line anode) resolution. These structures come from one-photon dissociation

of H+
2 v states and agree well in KER with the field-free vibrational-comb energies (see ticks

on plots).
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To extract the relative PD values for the different v states, we fit each of the peaks

with Gaussian distributions as shown by the dashed curves in Figs. 6.14(a) and 6.14(b).

The widths of all the Gaussians are fixed for each wavelength (FWHM=0.12 eV for 790 nm;

FWHM=0.15 eV for 395 nm) to limit the number of free parameters. Also, their KER

positions are restricted to a downward shift of <3% from the field-free vibrational energies.

This small KER shift is likely to be caused by a systematic energy calibration uncertainty

from our imaging setup. Essentially, the main remaining parameter is the amplitude of

each peak, which is adjusted to give the best overall fit (solid curve) to the data. The

integrated area of each Gaussian distribution is then divided by the fractional Franck-

Condon population of that v state to give the relative PD value. The results are shown in

Figs. 6.14(c) and 6.14(d) for 790 nm and 395 nm, respectively.

At 790 nm, a reduction in PD around v=12 is observed. This suppression was predicted

by our intense-field theory, and importantly, also by perturbation theory underscoring its

usefulness [Fig. 6.13(c)]. Similarly, 395 nm shows a reduction for v=7 and around v=9–

11, again in good correspondence with our theory [Fig. 6.13(d)]. Overall, comparison of

the theory and experiment in Figs. 6.13 and 6.14 show remarkable similarities in both the

KER distributions and the PD plots despite the pulse durations, intensities (and intensity-

averaging) and angular integration range all differing — in addition to the uncertainty

from the experimental fitting procedure. The observed suppression in Fig. 6.14 is clear

evidence that the suppression effect from the dipole coupling is measurable even in the

non-perturbative regime.
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Chapter 7

Controlling asymmetry in momentum
distribution

7.1 Introduction

In this chapter, my discussion will focus on the momentum distribution of the dissociating

fragments. In recent experiments involving H+
2 dissociation, the momentum distribution of

p+H is the most differential observable [4][15, 79]. A state selective momentum distribution

would be more differential, however, since H+
2 has an initial distribution of rovibrational

states both in an ion-beam and neutral gas target. From Eqs. (2.49) and (2.48) the momen-

tum distribution ρ(K) is

ρ(K) =ρ(E, θ)

√

2E

µ
=

√

2E

µ

∣

∣

∣

∣

s+

∑

L even

(−i)LYLmL
(K̂)e−iδEL+〈EL+ |FL+(R, tf )〉−

s−
∑

L odd

(−i)LYLmL
(K̂)e−iδEL−〈EL− |FL−(R, tf)〉

∣

∣

∣

∣

2

. (7.1)

Similar to the work done in Ref. [73], Eq. (7.1) shows that the momentum distribution

ρ(K) is the coherent sum of 1sσg and 2pσu. In some of the previous studies, the up-down

KER-distribution is studied instead of the momentum distribution as nuclear rotation was

not included [134–136]. Now, each molecular channel in ρ(K) exhibits a symmetric momen-

tum distribution as it contains only even (for 1sσg) or odd (for 2pσu) partial waves. But

the interference of even and odd partial waves from these channels will give an up-down

asymmetry in the momentum distribution. The laser field is vertical and thus up means
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7.1 Introduction

along the field. Equation 7.1 shows that interference occurs when both channels contribute

to the same energy. Asymmetry depends on the laser parameters as it is determined by the

phase of the amplitudes 〈EL+(−)|FL+(−)(R, tf)〉. In Sec. 6.4, we discussed that two-photon

and below-threshold dissociation (net one-photon) KER-distributions overlap in energy, and

thus can give asymmetry in the momentum distribution. To avoid confusing notation, I will

use “net-0ω” for zero-photon dissociation, “1ω” for bond-softening or one-photon dissocia-

tion, “2ω” and “3ω” for above-threshold dissociation (ATD) according to their respective

energy range, and “net-1ω” for below-threshold dissociation.

Generally, the interference of different pathways to the same energy causes asymmetry

in the momentum distributions of photoelectrons in the ionization of atoms and molecules

and of fragments in ionizations and dissociation of the molecules. Its dependence on the

carrier-envelope phase (CEP) of few-cycle laser pulses is the topic of many theoretical and

experimental studies [45, 136–140]. For a Gaussian laser field,

E(t) = E0e
−t2/τ2

cos(ωt + ϕ), (7.2)

and ϕ is the carrier-envelope phase. The earlier work of Paulus [137] for CEP effects was

about the left-right asymmetry in the above-threshold ionization of atoms. Since then, this

effect has been discussed to characterize the CEP of the pulses [141]. Apart from the asym-

metry in the momentum distribution, CEP also affects the total dissociation probabilities

of H+
2 and HD+ [139]. Moreover, CEP affects high harmonic generation [142]. Some re-

cent studies involve the CEP effects on photoexcitation and total ionization of alkali atoms

[143]. Carrier-envelope phase-locked pulses have an important application in generating

attosecond pulses [144, 145].

Asymmetry in the momentum distribution of p+H is also commonly referred to as up-

down asymmetry and electron localization. Both of these terms mean the asymmetry in

the momentum distribution. Up-down asymmetry becomes lower by using a more massive

hydrogen molecule, that is, D+
2 [136]. Electron localization can also be controlled as a

function of phase between the components of a two-color laser field [73, 134, 135]. Up-down
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7.2 Role of nuclear rotation in CEP effects

asymmetry can also be achieved in H+
2 or D+

2 dissociation as a function of time delay between

an attosecond pulse and infrared field and also the CEP of the infrared field [22, 146], where

one or more attosecond pulses are used for an early excitation of the initial wave function

in the 1sσg channel. The origin of the asymmetry in the momentum distribution by a

single pulse or by the combination of a few and CEP effects in the total probabilities can

be interpreted in all cases as an interference between the different pathways contributing to

the same energy [44].

Despite the recent advances in producing carrier-envelope phase controlled few cycle

laser pulses, measuring CEP effects in the dissociation of diatomic molecules remains a

challenging task for experimentalists. To date only a few successful measurements of CEP

effects have reported an asymmetry in the momentum distribution of dissociative single

ionization of D2 [45, 147]. While the prediction of asymmetric break up of HD+ and H+
2 as

a function of CEP was made a few years ago [139], successful measurements have not been

made to test these predictions starting directly from these molecular ions, for example in

an ion beam experiment [79]. And the question still remains,“How does nuclear rotation

effect up-down asymmetry?”, as all the theoretical calculations for few cycle pulses have

been performed using the aligned model.

7.2 Role of nuclear rotation in CEP effects

Up-down asymmetry arises from the interference of the 1sσg and 2pσu contributions. Thus

an intuitive way to predict asymmetry is to look at the branching ratios of these channels

in the total dissociation probability PD. Here, I am reporting all the results after incoherent

Franck-Condon averaging to resemble H+
2 the vibrational state distribution in an ion-beam

experiment [15].

111



7.2 Role of nuclear rotation in CEP effects

10
13

10
140

0.2

0.4

0.6

0.8

1

10
13

10
140

0.1

0.2

I (W/cm2)

B
ra

n
ch

in
g

ra
ti

os

F
C

av
ea

ge
d

P
D

τFWHM = 7 fs
τFWHM = 10 fs

2pσu

1sσg

Figure 7.1 Branching ratios of FC-averaged 1sσg and 2pσu as a function of laser peak intensity for
two different pulse length; Inset shows FC-averaged total dissociation probability for these pulses.

7.2.1 Branching ratios

Figure 7.1 shows the branching ratios of dissociation probabilities in the 1sσg and 2pσu

channels. The branching ratio is calculated by taking the ratio between the FC-averaged

dissociation probabilities in each 1sσg and 2pσu channel and the total FC-averaged dis-

sociation probability PD. Figure 7.1 shows that 2pσu dominates the dissociation for all

intensities, but for I > 8×1013 W/cm2 1sσg starts contributing with more than ten percent

probability. The difference between the two channels becomes smaller by about ten per-

cent for a short pulse of 7 fs, indicating that a shorter pulse would give a large asymmetry.

This finding agrees with an earlier prediction that carrier-envelope phase effects decrease

exponentially with pulse duration [44]. Taking it as a first good indication, we will use a

7 fs pulse to study up-down asymmetry in the momentum distribution. The difference be-

tween the branching ratios of 1sσg and 2pσu also decreases with intensity and thus increases

the up-down asymmetry. The inset in Fig. 7.1 shows that the dissociation probability for

7 fs is smaller than that of 10 fs for the enitre intensity range, indicating that the shorter

pulse will give a larger asymmetry in a smaller signal. Using a higher intensity would be
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7.2 Role of nuclear rotation in CEP effects

better to improve the signal and to make the channel dissociations comparable in an exper-

iment. Threrefore, branching ratios provide the necessary information about the required

laser parameters. Comparable branching ratios of 1sσg and 2pσu are only a necessary but

not sufficient condition for their interference. Both of the channels should contribute to the

same energy.

7.2.2 Momentum distribution and up-down asymmetry

From the discussion in Secs. 6.3–6.5 regarding different photon processes, we found that

the 2ω peaks overlap in energy with net-1ω peaks for lower vibrational states. Vibrational

states dissociating mainly by 1ω will have small overlap tails with 0ω and 2ω dissocia-

tion. To elaborate, KER-distributions for several individual vibrational states are plotted

in Fig. 7.2(a)-(h). Vibrational states v = 3, 4 have comparable contributions from two

channels, v = 5, 6, and 7 have small overlaps in energy from two channels, and for others,

the contribution from 1sσg is negligible compared to 2pσu. Thus, we expect lower vibra-

tional states to show large up-down asymmetry. Carrier-envelope phase effects are found to

be dominant for lower vibrational states in HD+ dissociation [148]. The KER-distributions

from 1sσg and 2pσu overlap in the energy range of 0.5 to 1.5 eV (corresponding to the

momentum of 6 to 10 a.u.). The overlap occurs between 2ω in 1sσg and net-1ω in 2pσu for

v = 3 and 4 (see Fig. 7.2), while for v ≥ 5, 1ω and 2ω dissociation overlap in energy.

From the above discussion, we conclude that the momentum distribution will have an

up-down asymmetry in the range of 6 to 10 a.u. of momentum, and a weaker contribution

from lower vibrational states (v = 3 to 6 or 7) determines the strength of the asymmetry

in the Franck-Condon averaged momentum distribution. Let us look at the momentum

distribution. Franck-Condon averaged momentum distributions for several CEP are shown

in Figs. 7.3(a)-(h) for a 7 fs pulse. The momentum distributions are aligned along the laser

polarization (along P‖). Closely examining the distributions, we find that an aligned peak at

about (P‖, P⊥) = (7, 0) a.u. in Fig. 7.3(a) becomes broader and slightly lower in momentum
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line) channels for individual initial vibrational states from 3 to 10, respectively. τFWHM = 7 fs and
I = 1014 W/cm2.
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[see Fig. 7.3(b)] and then appears opposite to P‖ for ϕ = π/2 with (P⊥, P‖) = (−7, 0) a.u.,

and then again becomes broader and apears along P‖. The momentum distribution for ϕ = π

in Fig. 7.3(e) is the mirror image of Fig. 7.3(a), which is guaranteed from the symmetry of

the Schrödinger equation. Besides the aligned peak at (P‖, P⊥) = (7, 0) a.u. in Fig. 7.3(a),

other structure like the double peak structure at about 25 and 155 degrees (from P‖ close

to the P = 7 a.u.) remains unaffected by CEP. To quantify CEP-dependence, we define an

asymmetry parameter A(E) similar to previous studies [45, 136, 140] as

A(E,ϕ) =

∫ π/2

0
ρ(E, θ) sin θdθ −

∫ π

π/2
ρ(E, θ) sin θdθ

dP/dE
. (7.3)

We integrate over the whole upper and lower halves of the distribution unlike some experi-

mental studies [45, 140], where a narrow cut in angle along the laser polarization direction

is used to calculate A. An angular cut would enhance A(E,ϕ), since the peak of the mo-

mentum distribution changing significantly with CEP lies in the angular range of 0 → 3π/8

and 5π/8 → π in the upper and lower half of the distribution, respectively. Moreover,

we found no CEP dependence in the total KER distribution (which is the denominator in

Eq. (7.3)) within the accuracy of our calculations. It is an interesting result and contradicts

the aligned model results, where both the total KER distribution and up-down asymmetry

show CEP dependence [136].

Figure 7.4 shows A(E,ϕ) as a function of KER and carrier-envelope phase. We can see

reasonable asymmetry in the range 0.2–2.5 eV. It oscillates between -0.12 and 0.12 and the

maximum amplitude appears at 2.2 eV, which does not lie in our estimated range of 0.5 to

1.5 eV. The reason for large asymmetry at 2.2 eV is not the bigger contrast between the up

and down probability but the small dP/dE in the denominator (see Fig. 7.2). We find that A

qualitatively resembles the aligned model results in Ref. [136]. It is not clear why the results

agree for asymmetry but not for the CEP effects in the total KER distribution from the

two calculations. In Ch. 4, we found that only after the angle-averaging defined in Eq. (4.2)

did the total dissociation probability from the aligned model agree with that obtained from

our method including nuclear rotation. Thus to have a more reliable answer about the
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Figure 7.4 Asymmetry defined in Eq. (7.3) plotted with KER and CEP (ϕ); laser parameters are
same as in Fig. 7.3.

asymmetry from the aligned model, one might perform angle averaging as described in

Chap. 4. We think it is something that should be further investigated. We also looked at

the angular distribution of the fragments after integrating over the entire energy range. The

angular distribution shows negligible CEP effects. That is not surprising given that up-down

asymmetries are different in different energy ranges and get averaged out after integration.

7.2.3 Intensity averaging

The most crucial test for an intensity-dependent effect to be observable in an experiment

is whether it survives intensity or focal volume averaging (see Sec. 6.6.1 for details). We

performed intensity averaging for a fixed carrier-envelope phase of ϕ = 0 for a 7 fs laser pulse

up to the peak intensity of 1.2 × 1014 W/cm2. From Fig. 7.3(a) and Fig. 7.4, we see clear

up-down asymmetry for zero carrier-envelope phase. So, if the asymmetry does not survive

for ϕ = 0, it is hard to imagine that it would survive for any other CEP. Figure 7.5(b) shows

asymmetry before and after the intensity averaging. The total KER distribution for the two

cases is also plotted in Fig. 7.5(a) to indicate that the small dP/dE is the reason for the

large up-down asymmetry for some energies. Intensity averaging indeed reduces up-down

asymmetry by more than a factor of three over the entire energy range shown in Fig. 7.5 and

makes it 17 times smaller for 0.5 to 1.0 eV, where dP/dE is large and the single intensity
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solid line) and after (red dotted lines) the intensity averaging. Peaks for the two cases are normal-
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intensity averaging. τFWHM = 7 fs.

shows maximum amplitude for A. In a previous study, intensity averaging also reduced the

CEP effects in HD+ channel asymmetry [44].

The reason for the significant reduction in A lies in the fact that 1ω dissociation for v ≥ 7

overlaps in energy with the KER-distribution from lower vibrational states and does not

show any up-down asymmetry (as it has primarily a 2pσu contribution). I should emphasize

that different vibrational states will not interfere with each other to give any asymmetry

as their contributions are added incoherently. Also, very weak intensities can dissociate

H+
2 by 1ω. Therefore, in an intensity averaged momentum distribution, 1ω gives a large

symmetric contribution compared to the small asymmetric contribution from the 2ω and

net-1ω dissociation interference and reduces up-down asymmetry. The intensity-differencing

scheme proposed in Ref. [149] can make the asymmetry stronger.

I will conclude this section by pointing out that we have presented the first theoretical

study of carrier-envelope phase effects in the momentum distribution including nuclear ro-
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tation. Nuclear rotation does not completely wash out CEP-effects in H+
2 dissociation by

a single few-cycle laser pulse. Up-down asymmetry appears in the momentum distribution

mainly by the interference of 2ω above-threshold dissociation and below-threshold dissocia-

tion in 1sσg and 2pσu channels, respectively, for v < 5. Interference between 1ω and 2ω gives

asymmetry from the fifth to the seventh vibrational states. High-lying vibrational states

v ≥ 8 dissociate mostly by one photon or bond-softening giving a symmetric momentum

distribution. It is this one photon symmetric distribution that reduces up-down asymmetry

after the intensity averaging. Thus, large one photon dissociation from high lying vibra-

tional states makes measuring CEP-effects in H+
2 dissociation by a single few-cycle pulse a

challenging experiment. From our results, we can also interpret the reason for the successful

CEP measuremnts in a gas-jet experiment. Field ionization of H2 has a narrow distribution

in lower vibrational states [150], thus their subsequent dissociation gives significant CEP

effects as up-down asymmetry in momentum distribution.

7.3 A pump-probe study: Enhanced CEP effects from

a prepared initial state of H+
2

From our discussion in the previous section, we have identified one photon dissociation

as the main reason for the reduced up-down asymmetry in the momentum distribution.

Here, we will propose a pump-probe scheme to reduce the effect of 1ω dissociation by

depleting high lying states with the pump and thereby enhancing the up-down asymmetry

by up to an order of magnitude in the intensity averaged momentum distribution. Pump-

probe techniques have existed for a long time and have developed greatly in recent years

for experiments involving short laser pulses. In the intense laser community, the pump is

generally used to excite a coherent state and the probe to monitor its dynamics [68, 151].
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Figure 7.6 Initial vibrational states distribution before and after the pump pulse with τFWHM =
45 fs, I = 1013 W/cm2.

7.3.1 Preparing the initial state with the pump pulse

In our study, we will use a long weak pulse of 45 fs with a peak intensity of 1013 W/cm2 as

the pump pulse. The long and weak pump pulses ensure the depletion of higher vibrational

states by 1ω and effect the population of lower states that can give up-down asymmetry.

We don’t want to use a short intense pulse for the pump as it will not serve the purpose

of depleting higher vibrational states and can dissociate them all. In the later step, we will

dissociate the remaining bound part of the wave function by a few cycle probe pulse. For

the probe pulse, we used the same laser parameters as in Sec. 7.2. So, we will refer to the

results described in the previous section as a “probe-only” as opposed to a “pump-probe”

study for the results in this section. Moreover, the pump-probe results will contain only

the probe part assuming there is no pump signal. The combined pump and probe signal

will be discussed at the end of the section. Our 45 fs pump pulse efficiently depletes all the

vibrational states lying in the bond-softening region (lying close to the one photon crossing

in the Floquet-picture). Figure 7.6 shows the v-distribution before and after the pump

pulse. Initial distributions have been taken to be Franck-Condon (FC). In this case, 9.58 %

of the population lies in v ≥ 8, and the pump pulse dissociates 90 percent of this population.

Therefore, v ≥ 8 becomes only 1.36 % of the total bound population after the pump pulse.

While dissociating most of the high lying vibrational states, the 45 fs pulse makes the
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bound and dissociating wave function rotationally excited by populating J up to 38 in the

remaining bound population of v ≥ 8 . This complicates the probe-pulse calculations as

the high intensity probe causes further excitations, making the calculations very tedious.

To avoid these tedious calculations, we chose to perform probe-pulse calculations only for

v = 0 − 7, as these states account for most of the bound population. In a single case study

including all vibrational states, we found that the results remain unaffected by the absence

of the high-lying vibrational states.

After the pump pulse, we can propagate the remaining bound wave function numeri-

cally using a Crank-Nicholson propagator as was done for field-assisted propagation. This

approach can be very time consuming for propagatation to long time-delays. Another ap-

proach is to extract the amplitudes for each ro-vibrational bound states and then calculate

the bound wave function at any time delay analytically. We used the approach in our cal-

culations. So, the bound nuclear wave function ψBv(R, t > tf) in the 1sσg channel for each

vibrational state at time t > tf after the pump pulse (tf is the final time for the pump) as

defined in Eq. (2.29) will be

ΨBv(R, t) =
∑

J

ΩJ
0M(R̂)

∑

v′

av′J(tf )eiEv′J (t−tf )χv′J(R). (7.4)

Using this as an initial state, we propagated the above wave function in the probe pulse

for the time delay of 267 fs between the peak of the pump and probe and analyzed the final

wave function to calculate the momentum distribution and up-down asymmetry.

7.3.2 Carrier-envelope phase effects after the probe pulse

To compare with the probe-only results, we performed the calculations as a function of the

carrier-envelope phase of the probe pulse with a peak intensity of 1014 W/cm2 and a 7 fs

duration. For most of the results, the time delay between the peaks of the pump and probe

pulses is 267 fs (marked (A) in Fig. 7.11) unless otherwise specified.
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Figure 7.7 Branching ratios of FC-averaged 1σg and 2pσu dissociation probabilities with laser
peak intensity for probe-only (black solid line) and pump-probe (red dotted line) studies. Inset
shows FC-averaged total dissociation probability for the two cases.

7.3.2.1 Comparison of the branching ratios

Similar to Fig. 7.1, we compare the probe-only and pump-probe branching ratios of the

1sσg and 2pσu channels. Figure 7.7 shows that for lower intensity, dissociation is dominated

by 2pσu, and therefore no up-down asymmetry is expected for the lower intensities in both

cases. The difference between the branching ratios of the two channels reduces faster with

intensity in the pump-probe study compared to the probe-only case. It indicates that the

momentum distribution in pump-probe dissociation should show a larger up-down asym-

metry than the single pulse dissociation. The inset in Fig. 7.7 shows that the FC-averaged

dissociation probability becomes larger for the 7 fs pulse in the pump-probe study. The dis-

sociation probability for the pump-probe case has not been normalized by the initial bound

population after the pump pulse and thus represents an absolute number and indicates that

the rotational pumping of the lower vibrational states enhances the dissociation probability.

This makes our scheme more attractive to study CEP effects as it will be from a large signal.

122



7.3 A pump-probe study: Enhanced CEP effects from a prepared initial state of H+
2

7.3.2.2 Momentum distribution and the up-down asymmetry

Momentum distributions for various carrier-envelope phases are shown in Figs. 7.8(a–h).

Comparing Fig. 7.8 with Fig. 7.3, we find that the momentum distributions are more aligned

for the pump-probe study. In this case, the momentum distribution significantly varies with

the carrier-envelope phase. We see an interesting double-peak structure along P‖ in the

upper half of the plane and a single peak in the lower half of Fig. 7.8(a). Peaks start

merging for ϕ = π/4 and a small peak starts building up near (P‖, P⊥) = (−7.5, 0) a.u. in

Fig. 7.8(b). Later, for ϕ = π/2 and ϕ = π, the double-peak structure becomes clearer in

the lower half of the momentum distributions in Fig. 7.8(c) and Fig. 7.8(d) to give a mirror

image of Fig. 7.8(a) in Fig. 7.8(e). Further changing ϕ shifts the double-peak back to the

upper half of the momentum distribution. A signature of the up-down asymmetry can be

seen by following the inner most gray dotted line in Fig. 7.8(a) as it passes through a peak

in lower half and a minimum in the upper half of the momentum distribution.

Nevertheless, to make a quantitative comparison between the pump-only and the pump-

probe results, we calculated A(E,ϕ) using Eq. (7.3). Comparing Fig. 7.9(a) and Fig. 7.9(b),

we find that depleting higher vibrational states leads to a five-fold enhancement in up-down

asymmetry with carrier-envelope phase for a single intensity. We also see from Fig. 7.9(b)

that the asymmetry is large in the energy range of 0.8–1.5 eV, which corresponds to the

large KER distribution. Both cases show stripes in the density plot of A(E,ϕ) with KER

and ϕ. The slope for these stripes is large for the pump-probe case. While the stripes have

also been seen in previous CEP studies, their origin is unknown. It would be interesting to

investigate why the asymmetry shows these well-defined stripes.

7.3.2.3 Intensity averaging

Similar to the probe-only case, we also performed intensity averaging for the pump-probe

results at a fixed CEP of ϕ = 0. Since we saw significant enhancement in A in our pump-

probe scheme for a 7 fs pulse, we also performed the study for a longer 10 fs pulse to
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Figure 7.8 (a)-(h) shows FC-averaged momentum distributions for ϕ = 0 to 1.75π with an
increment of 0.25π between successive plots. Gray dotted lines are constant momentum lines.
Probe pulse τFWHM = 7 fs and I = 1014 W/cm2.
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Figure 7.9 (a) Figure 7.4 replotted to compare with the pump-probe asymmetry in (b). τFWHM =
7 fs and I = 1014 W/cm2.

check if the asymmetry becomes large. The resulting asymmetry for the two pulse lengths,

namely 7 and 10 fs at peak intensities of 1.2×1014 and 1014 W/cm2 is shown in Fig. 7.10(a)

and Fig. 7.10(b), respectively. These show clearly an order of magnitude enhancement in

asymmetry for both the 7 and 10 fs pulses in pump-probe results compared to the pump-

only results. These pulses are longer than the 6 fs pulses usualy used to observe CEP effects.

So, we report a remarkable CEP effect in the up-down asymmetry in H+
2 dissociation by a

10 fs pulse. Figure 7.10(b) shows that intensity averaging makes it impossible to measure

the CEP-effects from a single 10 fs pulse in an experiment.
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Figure 7.10 (a) Asymmetry from the intensity-averaged momentum distribution for pump-only
(red) and pump-probe (blue) study for a 7 fs pulse with a peak intensity of 1.2× 1014 W/cm2. (b)

Same as (a) for 10 fs with peak intensity of 1014 W/cm2.
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7.3.2.4 Asymmetry for different pump-probe time delays

In addition to the depletion of the high-lying vibrational states, the pump also non-adiabatically

aligns the molecule as shown in Fig. 7.11, which shows 〈cos2 θ〉 for the bound wave function.

Rotational revivals of H+
2 were already discussed in detail in Chap. 5. So far, all the pump-

probe results are for a fixed time delay of 267 fs, which is marked as (A) in Fig. 7.11. We see

from Fig. 7.11 that the angular distribution of H+
2 at (A) is sharply aligned along the laser

polarization, which means that the alignment can also be the reason for the enhanced asym-

metry. To investigate the sensitivity of A on the initial angular distribution, we compare the

asymmetry from three different time delays of 267, 2455, and 3749 fs marked as (A), (B),

and (C) respectively in Fig. 7.11. The initial angular distributions for the three time delays

are clearly different from each other. The kinetic energy release distribution and A(E) for

the three (A), (B), and (C) cases are shown in Figs. 7.12(a) and 7.12(b), respectively. It is

evident from Fig. 7.12(a) that the total dissociation probability decreases significantly as the

initial angular distribution changes from aligned to anti-aligned ((A) to (C)), while A(E)

remains comparable for these cases. For the entire energy range in Fig. 7.12, the difference

between maximum up and maximum down asymmetry is 1.04, 0.675, and 1.04 for (A), (B),

and (C), respectively. For the 0–1.5 (eV) range with large dP/DE, this difference for (A),
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Figure 7.11 Franck-Condon averaged cos2 θ for the bound population of H+
2 during (red symbol)

and after the pump (solid line);(A), (B), and (C) labels angular distribution of FC-averaged bound
population at the delay of 267 (green), 2455 (magenta), and 3749 fs (blue) from the peak of the

pump; τFWHM = 45 fs, I = 1013 W/cm2.
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Figure 7.12 (a) KER-distribution (dP/dE) for the pump-probe time delay of 267, 2455, and 3749
fs marked as (A) (red solid line), (B) (green dashed line), and (C) (blue dotted line) respectively.
(b) Up-down asymmetry defined in Eq. (7.3) for (A), (B), and (C). τFWHM = 7 fs and peak intensity
of 1014 W/cm2.

(B), and (C) is 0.98, 0.675, and 0.84, respectively. This indicates that while the asymmetry

for (A) and (C) is equivalent, a significant dissociation signal in an experiment will lie in the

0–1.5 (eV) range in these cases, where (A) has a larger amplitude in A(E) than (C). We can

draw two conclusions from this comparison. Firstly, the depletion of high-lying vibrational

states is the major reason for enhanced up-down asymmetry, and secondly, asymmetry can

be further enhanced up to 30% by initially aligning the molecule.

7.3.2.5 Separating pump and probe signals in an experiment

Here we will discuss an important issue of separating the pump and probe signals in our

scheme as dissociating fragments from both pulses would fly to the same detector in an

experiment. In the following discussion we will show that the separation can be done

in a number of ways. The reason for the reduced asymmetry in the probe-only study

was the overlap of the KER-distribution from bond-softening, ATD, and below-threshold

dissociation to the same low energy range of 0.5-1.5 eV. The same is true in the pump-

probe study. We still expect the asymmetry to be large in a combined pump-probe signal

because the relative dissociation probability for lower vibrational states becomes much larger

after the rotational pumping, giving a better contrast. And, the long pump pulse also

produces KER-distribution with well defined peaks from different vibrational states because
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of the small bandwidth of laser. Therefore, the pump-probe momentum distribution and

the asymmetry would have symmetric structure on the top of asymmetric signal (not just

the overall symmetric signal as in probe-only case). To demonstrate, we have calculated
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Figure 7.13 (a) Intensity-averaged total KER-distribution. (b) Intensity-averaged up-down asym-
metry for the three cases in (a). τFWHM = 7 fs and peak intensity for pump up to 1013 W/cm2

and for probe up to 1.2 × 1014 W/cm2.

the asymmetry for the combined pump-probe intensity-averaged momentum distribution.

Figure 7.13 shows the results for the combined pump-probe results along with just the probe

part of the pump-probe and probe-only KER-distribution and asymmetry. We see from

Fig. 7.13 that A(E) remains unaffected for E ≥ 1.5 eV, since the pump pulse dissociation

does not contribute to this energy range. Although in the 0.5–1.5 eV energy range, the

A(E) amplitude becomes small, it is still larger than in the probe-only case on average by

a factor of five. This check ensures the feasibility of measuring the effect in an experiment.

The contrast can be further enhanced using pulses longer than 45 fs, thereby increasing

the depletion of the higher vibrational states. Also, the pump signal will be more structured

and therefore have a small overlap over the whole energy range. A longer pulse will give

more alignment, which can also enhance asymmetry. An angular cut can be helpful as

A(E) becomes the more aligned part of the angular distribution. It would be better to use

different laser focusing for the pump and probe pulses, i.e. relatively flat spatial focusing for

pump compared to the probe pulse. It will ensure the depletion of higher vibrational states

in all the molecules interacting with the probe pulse, thus giving a large signal from the
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7.4 Summary

subsequent dissociation. As the dissociation primarily occurs along the laser polarization, a

better way might be to use different laser polarization directions for pump and probe pulses

to separate their signals. For this one might want to use the time-delay when the molecules

are antialigned to improve the signal. Since depletion is the major reason for enhanced CEP

effects, we believe the effect should survive by using different laser polarizations. Similar

to the probe-only case, an intensity differencing scheme might also be useful to enhance

asymmetry. One might also be able to separate the pump-probe signals by repeating the

experiment with and without the probe pulse and then subtracting the two to get the probe

part of the signal. Differencing schemes mostly require a dense target density and hence for

an H+
2 ion beam will not be very effective.

7.4 Summary

To summarize, we presented a benchmark study for the momentum distribution of H+
2

dissociation by few-cycle laser pulses. We see an up-down asymmetry in the incoherently

FC-averaged momentum distribution of H+
2 dissociation fragments by short pulses of 7 and

10 fs and an intensity of 1014 W/cm2. Asymmetry changes as a function of carrier enve-

lope phase of the short pulse. While significant for a single intensity, asymmetry becomes

negligible after intensity averaging due to the large contribution from the higher vibrational

states with symmetric momentum distributions. Thus, we propose a pump-probe scheme

to deplete higher vibrational states by a long, weak pump pulse and see an order of magni-

tude enhancement in intensity averaged up-down asymmetry. Besides depletion, an initially

aligned molecule can further enhance the asymmetry. We are optimistic that by using dif-

ferent techniques pump and probe signals can be efficiently separated. Moreover, we are

optimistic that the effect should be observable in neutral hydrogen, its isotopes and also

other molecules.
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Chapter 8

Conclusion

This dissertation presents a systematic theoretical study of H+
2 dissociation in intense short

laser pulses. Our study proved to be very useful in giving a basic understanding about the

behavior of H+
2 dissociation.

By developing a theoretical formulation that is essentially exact for H+
2 dissociation, we

were able to solve the TDSE for H+
2 in Gaussian laser pulses for a range of intensities and

pulse durations. The dissertation thus provides a benchmark study of H+
2 dissociation by

few-cycle laser pulses, because most previous calculations were done for aligned molecules.

This dissertation is comprehensive, discussing the total dissociation probability of H+
2 , the

dynamics of dissociating and bound wave functions, and the angular, kinetic energy, and

momentum distributions of p+H.

In the beginning, we had little knowledge about the role of nuclear rotation in H+
2

dissociation by short (10 fs) laser pulses. Given that the H+
2 rotational period is much longer

than the laser duration in most of the recent studies, it was not obvious that nuclear rotation

would have any impact on the molecular dynamics. By comparing full-dimensional total

dissociation probabilities to that of the aligned model and also by studying the dynamics

of the dissociating fragments, we found that even for pulses shorter than 10 fs, the aligned

model results only agree qualitatively with the exact results.

We developed an intuitive way to quantify dynamical alignment by comparing the angle-

averaged (effectively intensity-averaged) aligned model dissociation probabilities to those
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of our full-dimensional method. This comparison showed that angle-averaged dissociation

probabilities compare better with the full-dimension dissociation probabilities. So, if un-

avoidable, calculations can be performed without including the nuclear rotation, but angle-

averaging should be performed.

The laser electric field initiates a coherent rotational wavepacket for individual vibra-

tional states which evolves and revives after the laser field. Incoherent FC-averaging pushes

the revival time to long intervals of about 4 ps. The revival time depends on the slowest

frequency in the wave function. The slowest frequency for an initial J = 0 is different, for

example, from the slowest frequency for initial J = 1 and for initial J = 2, M = 1, 2. There-

fore, thermal averaging would be necessary to get information about physically observable

rotational revivals as the revival times depend strongly on the initial angular momentum

state.

Our work was a big step forward for quantitative comparison with experimental observ-

ables like kinetic-energy release angular, and momentum distributions. Further investigation

should be done to include thermal-averaging. Nevertheless, intensity averaging greatly im-

proves the agreement between theory and experiment.

The carrier-envelope phase of few cycle pulses affects the direction of the emission of

the proton and hydrogen. This appears as an up-down asymmetry in the momentum dis-

tribution along the laser polarization direction. Up-down asymmetry is large for the lower

vibrational states of H+
2 as different photon processes are comparable and contribute to the

same energy. The high-lying vibrational states exhibit symmetric momentum distributions

and dissociate very easily primarily by 1ω dissociation. Thus, they give a large contribu-

tion to the dissociation in an experiment because of the intensity averaging, and makes the

asymmetry negligible. To get around this problem, we proposed a pump-probe study, where

a long pulse depletes all the higher vibrational states and aligns the remaining bound pop-

ulation. A CEP-locked probe will then give an enhanced up-down asymmetry. We believe

the asymmetry can be observed in an experiment.
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Finally, our study has not yet taken into account thermal averaging. This will be an

important next step to make the study complete and to make quantitative comparison with

experimental findings. Our group will take the theoretical formulation I developed and

continue to explore the behavior of H+
2 and D+

2 in a laser field. Further, the generalized

structure of the theoretical formulation will help extend the formulation for the interac-

tion of H+
2 with elliptically polarized light and also to more generalized problems including

multielectron diatomic molecules and heteronuclear molecules. In one such effort, we have

already performed the numerical calculations for the dissociation of metastable ground state

CO2+ by a laser field [14].
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Appendix A

Dipole matrix element

We used a laser pulse linearly polarized along the z-axis in all of our calculations. For this

case, though, we need only the z-component of the dipole operator. We must thus calculate

the following dipole matrix elements:

Dαα′ = −〈Φα|z|Φα′〉. (A.1)

In Eq. (A.1), Φα = ΩJΠ
MΛφnΛσz

. The polarization axis is defined in the lab frame, but we

performed all adiabatic calculations of the electronic states in the body-fixed frame. So, to

evaluate the matrix elements, we transform the dipole operator from the lab frame to the

body frame. The lab frame coordinate z is related to the body-fixed coordinates as follows:

dz = −z = −
∑

µ=0,±1

D1∗
0µ(φ, θ, χ)r′µ. (A.2)

To connect most directly with the electronic part of the body-frame dipole matrix elements

(involving φnΛσz
), we can rewrite the spherical body-frame components r′0 and r′± in terms

of the cylindrical coordinates as r′0 = z′ and r′± = ∓(1/
√

2)ρ′ (the χ-dependence of r′± is

included in the D-functions). This transformation has been made to be able to use existing

electronic dipole couplings. Using Eq. (A.2) to transform z into body-fixed coordinates and
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using Eqs. (2.7)-(2.8) in Eq. (A.1), we obtain

Dαα′ = −
∑

µ

〈φnσzΛΩJΠ
MΛ|D1∗

0µrµ|φn′σ′

zΛ′ΩJ ′Π′

M ′Λ′〉

= −
∑

µ

〈φnσzΛ|rµ|φn′σ′
zΛ′〉〈ΩJΠ

MΛ|D1∗
0µ|ΩJ ′Π′

M ′Λ′〉. (A.3)

The first matrix element is determined numerically from the BO states, while the second is

purely angular and is analytic:

〈ΩJΠ
MΛ|D1∗

0µ|ΩJ ′Π′

M ′Λ′〉 =
1

2

√

(2J ′ + 1)(2J + 1)

(1 + δΛ′0)(1 + δΛ0)
(−1)µ−M ′+Λ′

(

J 1 J ′

−M 0 M ′

)[(

J 1 J ′

−Λ −µ Λ′

)

+Π(−1)J+Λ

(

J 1 J ′

Λ −µ Λ′

)

+ Π′(−1)J ′+Λ′

(

J 1 J ′

−Λ −µ −Λ′

)

+ΠΠ′(−1)J+J ′+Λ+Λ′

(

J 1 J ′

Λ −µ −Λ′

)]

. (A.4)

These dipole matrix elements preserve all of the expected selection rules.

A.1 Structure of dipole matrix for initial M = 0

For the bound 1sσg channel of H+
2 , the parity Π is given by Π = (−1)J . We have used

an initial M = 0 in most of the calculations. For M = 0 = M ′, the dipole selection rules

require J ′ = J ± 1. Moreover, for parallel transitions, i.e. Λ′ = Λ, the body frame reflection

symmetry will change as σ′
z = −σz and only µ = 0 will contribute to the angular matrix

elements. For perpendicular transitions, Λ′ = Λ ± 1 are the allowed transitions and require

(−1)Λ
′

σ′
z = −(−1)Λσz (g ↔ u in standard notation). In this case, the µ = ±1 terms add

to give the angular contribution to the matrix elements. After implementing the dipole

selection rules, our total dipole matrix has the structure indicated in Fig. A.1 for n = 1, 2

and Λ = 0, 1. Each block is for a given total angular momentum J , starting from J = 0, for

which the only allowed value of Λ is zero — hence we have a 6× 6 block. For the remaining

J ’s, the blocks are 8 × 8. Of the 6 elements corresponding to Λ = 0, three are for σz = 1,

and the other three are for σz = −1. One of these three elements is for n = 1; and the other

two, for n = 2. For the 8 × 8 blocks, the last two columns or rows are for couplings with
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Figure A.1 Structure of the dipole coupling matrix. Blanks indicate vanishing matrix elements,

and ×s, non-zero elements.

Λ = 1, σz = ±1 and n = 2. Overall, the dipole matrix has a block tri-diagonal structure as

one would expect from the dipole selection rules and our choice to increment J most slowly

in our basis.
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Basis index J M Π Λ σz n
1 0 0 + 0 + 1
2 0 0 + 0 + 2
3 0 0 + 0 + 2
4 0 0 + 0 – 1
5 0 0 + 0 – 2
6 0 0 + 0 – 2
7 1 0 – 0 + 1
8 1 0 – 0 + 2
9 1 0 – 0 + 2
10 1 0 – 0 – 1
11 1 0 – 0 – 2
12 1 0 – 0 – 2
13 1 0 – 1 + 2
14 1 0 - 1 – 2
15 2 0 + 0 + 1
16 2 0 + 0 + 2
17 2 0 + 0 + 2
18 2 0 + 0 – 1
19 2 0 + 0 – 2
20 2 0 + 0 – 2
21 2 0 + 1 + 2
22 2 0 + 1 – 2
23 3 0 – 0 + 1
24 3 0 – 0 + 2
25 3 0 – 0 + 2
26 3 0 – 0 – 1
27 3 0 – 0 – 2
28 3 0 – 0 – 2
29 3 0 – 1 + 2
30 3 0 – 1 – 2

Table A.1 Quantum numbers in each
column (row) of the basis in the dipole

matrix shown in Fig. A.1. The pattern
will continue up to Jmax. For odd J ’s,
the first six rows will be omitted. It is
described earlier in Sec. 2.3.7 that asymp-

totically molecular states are linear com-
binations of Stark states for p+H with
quantum numbers n1, n2, |Λ|. Note that
n = n1 + n2 + Λ + 1, and only n is shown

in the last column.
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Appendix B

Derivation of the momentum
distribution

Here I will document in detail all of the steps mentioned in Sec. 2.3.7 in going from Eq. (2.36)

to Eq. (2.37) and also the steps involved in deriving Eq. (2.38). From Eq. (2.36),

eiK.R|nlm〉A −−−→
R→∞

1

KR

∑

LmL

iLjL(KR)Y ∗
LmL

(K̂)YLmL
(R̂)|nlm〉A (B.1)

Since our molecular basis is defined in terms of the total orbital angular momentum J , we

construct the total angular momentum basis from |LmL〉 ≡ YLmL
(R̂) and |nlm〉A as

|JMLln〉A =
∑

mLm

〈LlmLm|JM〉|LmLnlm〉A (B.2)

here 〈LlmLm|JM〉 are Clebsch-Gordon (CG) coefficients and |LmLnlm〉A represents |LmL〈|nlm〉A.

Similarly, for the electron localized on proton B, we can define |JMLln〉B as

|JMLln〉B =
∑

mLm

〈LlmLm|JM〉|LmLnlm〉B (B.3)

Now, we will return to the molecular basis and express them in terms of the basis defined

in Eqs. (B.2) and (B.3). Recalling molecular basis functions are

|Φα〉 = |JMΠnΛσz〉 ≡ ΩJΠ
MΛ|nΛσz〉 (B.4)

where |nΛσz〉 ≡ φnΛσz
(R; ξ, η). Since the χ dependence is incorporated into ΩJπ

MΛ, |nΛσz〉

and |n− Λσz〉 are the same. In a more general form, Φα is

Φα =

√

2J + 1

8π2

1
√

2(1 + δΛ0)

[

DJ
−M−Λ|nΛσz〉 + π(−1)J+ΛDJ

−MΛ|n− Λσz〉
]

(B.5)

150



Asymptotically, the electronic wave function in the molecular basis |nΛ(σz = ±)〉 can be

defined in terms of the body-frame (BF) atomic basis (|nlΛ〉) with the electron localized on

proton A(B) as

|nΛσz〉 =
1√
2
(|nlΛ〉A + σz|nlΛ〉B)

|n− Λσz〉 =
1√
2
(|nl − Λ〉A + σz|nl − Λ〉B). (B.6)

The molecular basis functions |nΛσz〉 are calculated numerically and the above expressions

are true up to an overall phase. Since the functions are defined to be real, the phase can be

+1 or -1. More precisely,

|nΛσz〉 =
sβ√
2
(|nlΛ〉A + σz|nlΛ〉B)

|n− Λσz〉 =
sβ√
2
(|nl − Λ〉A + σz|nl − Λ〉B) (B.7)

where parameter sβ is the overall phase for each |nΛσz〉. The phase becomes important to

asymptotically define electron localization on each center. Moreover, asymptotically |nΛσz〉

goes to the linear combination of atomic Stark states of p+H and not the spherical basis as

expressed in Eq. (B.7). However, these states can be combined to get the spherical basis.

We have opted to write the asymptotic relation between the molecular and atomic bases

in this form to take advantage of the properties of spherical harmonics. Thus, implicitly,

each |nlΛ〉A(B) atomic state is a linear combination of Stark states. Also note that |nlΛ〉A(B)

is not equivalent to |nl − Λ〉A(B). The body-frame atomic basis on the right-hand side in

Eq. (B.7) is related to the lab-frame |nlm〉A(B) by the Wigner rotation matrix as

|nl ± Λ〉A(B) =
∑

m

Dl
m±Λ|nlm〉A(B). (B.8)

Using Eqs. (B.5), (B.7) and (B.8) in Eq. (B.4), we get

|JMΠnΛσz〉 =

√

2J + 1

8π2

1
√

2(1 + δΛ0)

∑

m

(

DJ
−M−ΛD

l
mΛ + Π(−1)J+ΛDJ

−MΛD
l
m−Λ

)

× sα√
2

(|nlm〉A + σz|nlm〉B) (B.9)
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In the above equation, the product of two D-functions from Ref. [89] can be expressed as

DJ
−M−ΛD

l
mΛ = (−)−M−ΛDJ∗

MΛD
l
mΛ

=
∑

L

∑

mL

(2L+ 1)

(

J l L
−M m mL

)(

J l L
−Λ Λ 0

)

DL∗
mL0. (B.10)

Similarly,

DJ
−MΛD

l
m−Λ = (−)−M+ΛDJ∗

M−ΛD
l
mΛ

=
∑

L

∑

mL

(2L+ 1)

(

J l L
−M m mL

)(

J l L
Λ −Λ 0

)

DL∗
mL0. (B.11)

Moreover,

DL∗
mL0 =

√

8π2

2L+ 1
YLmL

. (B.12)

The factor
√

8π2/2L+ 1 ensures normalization with respect to all angles, namely φ, θ, and

χ. Substituting the above three equations into Eq. (B.9) gives

|JMΠnΛσz〉 =

√

2J + 1

8π2

1
√

2(1 + δΛ0)

√
8π2

∑

L

√
2L+ 1

(

J l L
−Λ Λ 0

)

(1 + π(−1)J+Λ+J+l+L)

×
∑

mLm

(

J l L
−M m mL

)

YLmL

{

sβ√
2
(|nlm〉A+σz|nlm〉B)

}

. (B.13)

We used the following identity to convert the 3j to a Clebsch-Gordon coefficient

√
2J + 1

(

J l L
−M m mL

)

=
√

2J + 1(−)J+l+L

(

L l J
mL m −M

)

= (−)J+l+L(−)L−l+M〈LlmLm|JM〉

= (−)J+M 〈LlmLm|JM〉.

Rearranging the above equation,

|JMΠnΛσz〉 =
1

√

2(1 + δΛ0)

∑

L

√

2L+ 1

2J + 1
(−)J+M+J+Λ〈Ll0Λ|JΛ〉(1 + Π(−1)L+l+Λ)

× sβ√
2

[

∑

mLm

(−)J+M
√

2J + 1

(

L l J
mL m −M

)

YLmL
|nlm〉A

+σz

∑

mLm

(−)J+M
√

2J + 1

(

L l J
mL m −M

)

YLmL
|nlm〉B

]
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The two sums in the square bracket can be recognized as the total orbital angular momentum

basis defined in Eqs. (B.2) and (B.3), respectively. Finally, we will have

|JMΠnΛσz〉 =
1

√

2(1 + δΛ0)

∑

L

√

2L+ 1

2J + 1
.(−)M+Λ〈Ll0Λ|JΛ〉(1 + Π(−1)L+l+Λ)

×
{

sβ√
2
(|JMLln〉A + σz|JMLln〉B)

}

(B.14)

Once we have developed Eq. (B.14), it becomes easier to transform between the BF molecular

basis and the LF atomic basis. We can express |JMLln〉A as

|JMLln〉A =
∑

ΠΛσz

〈JMΠnΛσz|JMLln〉A|JMΠnΛσz〉 (B.15)

We can write a similar equation for |JMLln〉B . Using Eq. (B.14), we have

|JMLln〉A(B) =
∑

ΠΛ

(−)J+Λ

√

2L+ 1

2J + 1

1
√

2(1 + δΛ0)
(1 + Π(−)L+l+Λ)〈Ll0Λ|JΛ〉

× 1√
2

(

sβ+ |JMΠnΛ+〉 ± sβ−
|JMΠnΛ−〉

)

(B.16)

In the above equation, the symbol α+(−) has been adopted to express α = {JMΠnΛ+(−)}.

Also, sβ+(−)
represents |nΛ + (−)〉. Using Eqs. (B.2) and (B.16) in Eq. (B.1), the final

expression for the eiK.R|nlm〉A is as follows:

eiK.R|nlm〉A −−−→
R→∞

∑

LmLJΠΛ

(−)M+ΛiLY ∗
LmL

(K̂)jL(KR)

√

2L+ 1

2J + 1
〈Ll0Λ|JΛ〉〈LlmLm|JM〉

× (1 + Π(−)L+l+Λ)
√

2(1 + δΛ0)

1√
2
{sβ+ |JMΠnΛ+〉 + sβ−

|JMΠnΛ−〉} (B.17)

Equation (B.17) appears as Eq. (2.37).

From Eq. (2.35),

ΨA(K,R, r) =
∑

α

Cα(K)FEα(R)Φα(R; R̂, r). (B.18)

Asymptotically,

FEα −−−→
R→∞

1

KR
sin(KR − κπ

2
+ δEα) (B.19)

153



where,

κ(κ + 1) = ζ2

and δEα is the scattering phase shift for each FEα. The discussion about κ has already come

following Eq. (2.39).

In a half-collision problem, the scattering solution can be written as the linear combina-

tion of an outgoing plane wave and an incoming spherical wave,

Ψ−
(sc)(K,R, r) −−−→

R→∞
D

[

eiK.R + f∗(K.R̂)
e−iKR

R

]

|nlm〉A (B.20)

where, eiK.R|nlm〉 is defined in Eq. (2.37) in terms of the BO basis Φα. In Eq. (2.37), the

jL(KR) are spherical Bessel function, and behave as sin(KR − Lπ/2)/KR asymptotically.

The next step will be to use the asymptotic form for FEα defined in Eq. (B.19) and jL(KR)

in Eqs. (B.18) and (B.17) and then compare the coefficients of eiKR/R in both equations

and also project 〈Φα| to get

Cα(K) =G(−)M+Λeiπκ/2−iδEα

∑

LmL

Y ∗
LmL

(K̂)

√

2L+ 1

2J + 1
〈Ll0Λ|JΛ〉〈LlmLm|JM〉

× (1 + Π(−)L+l+Λ)
√

2(1 + δΛ0)

sβ√
2

(B.21)

The coefficient G can be obtained from energy normalization of the continuum states

FEα(R). This completes the discussion for the derivation of the continuum state and results

in the following final equation (|K, nlm〉A ≡ ΨA(K,R, r)).

|K, nlm〉A =
∑

LmLJΠΛ

ei κπ
2 Y ∗

LmL
(K̂)(−)M+Λ

√

2L+ 1

2J + 1
〈Ll0Λ|JΛ〉〈LlmLm|JM〉

× (1 + Π(−)L+l+Λ)
√

2(1 + δΛ0)

1√
2
{sβ+e

−iδEα+ |Eα+〉 + sβ−
e−iδEα

− |Eα−〉} (B.22)

In the above equation, |Eα〉 ≡ FEα(R)Φα(R̂, ). Equation (B.22) appeared in Sec. 2.3.7 as

Eq. (2.38). Further, the continuum wave function needs to be symmetrized with respect to

exchange of nuclei, which is discussed in Sec. 2.3.7.
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Appendix C

Convergence results

Number of grid point
Grid in Fig. 2.1(a) WKB grid

v 1600 2000 2400 3739
0 0.0000 0.0000 0.0000 0.0000
1 0.0003 0.0003 0.0003 0.0003
2 0.0103 0.0103 0.0103 0.0103
3 0.0698 0.0698 0.0698 0.0698
4 0.1584 0.1585 0.1585 0.1585
5 0.3191 0.3191 0.3192 0.3192
6 0.4779 0.4780 0.4781 0.4781
7 0.6354 0.6356 0.6357 0.6357
8 0.7921 0.7923 0.7924 0.7924
9 0.8595 0.8596 0.8596 0.8596
10 0.7085 0.7082 0.7081 0.7081
11 0.6150 0.6151 0.6152 0.6152
12 0.5605 0.5602 0.5649 0.5600
13 0.5780 0.5776 0.5774 0.5774
14 0.5351 0.5350 0.5349 0.5349
15 0.4683 0.4682 0.4681 0.4681
16 0.3921 0.3919 0.3918 0.3918
17 0.3130 0.3125 0.3123 0.3123
18 0.1294 0.1285 0.1279 0.1279
19 0.0079 0.0078 0.0078 0.0078

FC-averaged 0.1853 0.1853 0.1854 0.1853

Table C.1 Change in dissociation probability with number of grid points of a 70.a.u. box for
each v and also in FC-averaged. τFWHM = 10 fs, I = 1014 W/cm2.
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Figure C.1 Non-uniform grid used in all calculations (black solid line) and WKB grid (red dotted
line). We call the second grid WKB as it is based on the local wavelength of the continuum wave
function for the maximum energy component of the wave function.
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Figure C.2 Same as Fig. 6.5 along with KER-distribution obtained by using WKB grid (shown
in Fig. C.1) for v = 3. The error in total dissociation probability is 0.26 percent. τFWHM = 10 fs

and I = 5 × 1013 W/cm2
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v Two including maximum PD final PD

channels n = 2 manifold n = 2 manifold n = 2 manifold
0 0.0000 0.0000 0.0025 0.0000
1 0.0002 0.0003 0.0030 0.0000
2 0.0093 0.0103 0.0037 0.0000
3 0.0721 0.0698 0.0054 0.0002
4 0.1486 0.1585 0.0078 0.0005
5 0.3144 0.3192 0.0105 0.0005
6 0.4569 0.4781 0.0154 0.0023
7 0.6172 0.6357 0.0213 0.0055
8 0.7864 0.7924 0.0263 0.0081
9 0.8609 0.8596 0.0342 0.0118
10 0.7093 0.7081 0.0321 0.0118
11 0.6184 0.6152 0.0333 0.0127
12 0.5678 0.5600 0.0314 0.0117
13 0.5778 0.5774 0.0311 0.0119
14 0.5344 0.5349 0.0321 0.0133
15 0.4671 0.4681 0.0394 0.0174
16 0.3879 0.3918 0.0486 0.0216
17 0.3098 0.3123 0.0410 0.0145
18 0.1351 0.1279 0.0296 0.0036
19 0.0079 0.0078 0.0258 0.0004

FC-averaged 0.1817 0.1853 0.0089 0.0016

Table C.2 Comparison of the two-channels dissociation probabilities with calculations including
the n = 2 manifold. The forth column shows the maximum population in the n = 2 manifold
during the pulse and the last column is the final population in the higher electronic channels.

τFWHM = 10 fs and I = ×1014 W/cm2.
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v Total dissociation maximum PD final PD

probability n = 2 manifold n = 2 manifold
0 0.0000 0.0032 0.0000
1 0.0003 0.0038 0.0000
2 0.0064 0.0045 0.0000
3 0.0492 0.0060 0.0001
4 0.1219 0.0087 0.0007
5 0.2341 0.0120 0.0011
6 0.3481 0.0162 0.0018
7 0.4925 0.0224 0.0054
8 0.6366 0.0277 0.0097
9 0.6883 0.0283 0.0098
10 0.5890 0.0268 0.0088
11 0.5359 0.0277 0.0092
12 0.5114 0.0285 0.0097
13 0.4997 0.0302 0.0110
14 0.4712 0.0355 0.0143
15 0.4111 0.0469 0.0224
16 0.3513 0.0594 0.0308
17 0.2852 0.0554 0.0228
18 0.1134 0.0414 0.0065
19 0.0073 0.0391 0.0009

FC-averaged 0.1435 0.0095 0.0016

Table C.3 Total dissociation probabilities with calculations including the n = 2 manifold in the

second column. The third column shows the maximum population in the n = 2 manifold during the
pulse and the last column is the final population in the higher electronic channels. τFWHM = 7 fs
and I = 1.2 × 1014 W/cm2.

Intensity τFWHM Jmax

(W/cm2) (fs)
1014 5 34

1.2 × 1014 7 45
1014 10 47
1013 45 38
1013 60 40
1013 90 42
1013 135 43

Table C.4 Intensities in the first column are the maximum for each pulse length in our calculations.
The third column shows the maximum number of partial waves populated
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