Abstract Submitted
for the DAMOP01 Meeting of
The American Physical Society

Sorting Category: 26 (Experimental)

$\text{B}^{3+}(2p^2)^1D$ doubly-excited state formed in energetic collisions of $\text{B}^{4+} + \text{H}_2$ by resonant transfer and excitation1

T.J.M. ZOUROS, E.P. BENIS, Univ. of Crete, Heraklion, Crete, Greece & J.R. Macdonald Lab, Kansas State University, H. ALIABADI, M. ZAMKOV, P. RICHARD, J.R. Macdonald Lab, Kansas State University — Absolute double differential cross section measurements on the formation of the helium-like doubly-excited state of $\text{B}^{3+}(2p^2)^1D$ are reported. The state is populated via the resonant electron transfer and excitation process in collisions of (3.5 - 8)MeV $\text{B}^{4+} + \text{H}_2$. A zero-degree high efficiency hemispherical spectrograph2 was used to measure the Auger decay of the doubly-excited states to the $\text{B}^{4+}(1s)$ ground state. The measured Auger decay rates are compared to the theoretical predictions.

1This work was supported by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U. S. Department of Energy

P. Richard
richard@phys.ksu.edu
J.R. Macdonald Lab
Kansas State University

X Prefer Oral Session

Prefer Poster Session

Date submitted: February 1, 2001

Electronic form version 1.4