Two are better than one: Combining ATI and KER spectra1

C.B. MADSEN, B.D. ESRY, J.R. Macdonald Laboratory, Department of Physics, Kansas State University — Molecular breakup in a strong laser field is a vital topic, because measurement of the resulting fragments is a key tool for learning about their dynamics. Studies of kinetic energy release (KER) and above-threshold-ionization (ATI) spectra as a function of, e.g., molecular alignment and carrier-envelope-phase have revealed important information about both nuclear and electronic behavior. We explore the potential of gaining even more insight by investigating the breakup probability as a function of all fragment energies at once. As ATI and KER spectra are projections of the joint energy spectrum, this joint spectrum gives a more detailed look into fragmentation dynamics. Validating our strong-field-approximation-based qualitative picture for H\textsubscript{2}+ allows us to generalize our studies to larger molecules. In particular, we show that when the fragmentation probability of even a complex molecule is resolved onto the energies of all fragments, the probability peaks on surfaces separated by the photon energy where the distribution on a given multiphoton surface reflects structure and dynamics of the molecule.

1Supported by Kansas State University and by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy.