Geometric and Isotopic Influences on the Fragmentation Patterns of Rapidly Ionized Methane and Ammonia\textsuperscript{1}

LAURA DOSHIER, AMY LUEKING, IVAN LEE, ERIC WELLS, Department of Physics, Augustana College, Sioux Falls, SD 57197, ELI PARKE, MAT LEONARD, KEVIN D. CARNES, ITZIK BEN-ITZHAK, J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS 66506 — The fragmentation branching ratios of (deuterated) ammonia and methane ionized by 19 MeV F\textsuperscript{7+} and 4 MeV H\textsuperscript{+} projectiles have been measured with an emphasis on dissociation channels that require bond rearrangement. For these projectiles, the collision time is approximately 10 attoseconds, a duration over which nuclear motion is negligible. As a result, the rearrangement occurs during the post-collision dissociation process and nuclear mass plays a role. Production of H\textsubscript{2}\textsuperscript{+} and H\textsubscript{3}\textsuperscript{+} ions, in coincidence with either neutral or ionic fragments, was analyzed for these eight collision systems. Statistically significant isotopic effects are observed in some (e.g. H\textsuperscript{+} + NH\textsubscript{3}\textsuperscript{+} → H\textsuperscript{+} + N + H\textsubscript{3}\textsuperscript{+}), but not all (e.g. F\textsuperscript{7+} + NH\textsubscript{3}\textsuperscript{+} → F\textsuperscript{7+} + N + H\textsubscript{3}\textsuperscript{+}), dissociation pathways.

\textsuperscript{1}Supported by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy, and by Research Corporation.