Photodetachment of Rb\(^{-}\), Cs\(^{-}\), and Fr\(^{-}\) within a new boundary-corrected Pauli equation approach\(^1\) C. BAHRIM, Dept. of Physics, Kansas State University, Manhattan and Chemistry and Physics Dept., Lamar University, Beaumont, TX, I. I. FABRIKANT, Dept. of Physics and Astronomy, University of Nebraska, Lincoln, U. THUMM, Dept. of Physics, Kansas State University, Manhattan – The Pauli equation (PE) is a weak relativistic limit of the exact Dirac equation which includes the spin-dependent potential \(V_{LS}\) added to the non-relativistic, spin-independent Coulomb potential \(V\). For a Coulomb potential, \(V_{LS}\) includes a non-physical singularity \(1/r^3\) at \(r = 0\), and the PE-approach breaks down. Various regularization functions have been suggested to remove this singularity [1]. Based on the exact analytic solution of the Dirac equation near the nucleus, we formulated boundary conditions for solving the PE for an electron interacting with an atom [1]. By integrating the PE using an effective potential \(V_{eff}\) that is adjusted to reproduce scattering phase shifts provided by exact Dirac \(R\)-matrix calculations, we calculated angle-differential and total photodetachment (PD) cross sections. Our \(^3P_0\) resonance contribution to the PD cross section of Cs\(^{-}\) agrees (in position and width) with recent experiments [2], after fine-tuning \(V_{eff}\). [1] C. Bahrim, I.I. Fabrikant, and U. Thumm, Phys. Rev. Lett. 87, 123003 (2001), and refs. therein. [2] M. Scheer et al., Phys. Rev. Lett. 80, 684 (1998).

\(^1\)Supported by the Science Division, Office of Fusion Energy, Office of Energy Research, US DOE

Uwe Thumm
thumm@phys.ksu.edu

Prefer Poster Session
Dept. of Physics, Kansas State University, Manhattan, KS 66502

Date submitted: February 2, 2002

Electronic form version 1.4