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Hyperspherical coordinates were first introduced by
Fano and his coworkers [1,2] to understand the basic
properties of doubly excited states of helium atoms. In
the past several decades, this approach has been im-
proved and extended to a broad range of few-body atom-
ic and molecular systems. In this work, we present our
recent progress on the understanding of electron corre-
lations mainly in triply excited states of atoms. We al-
so present a new development of the hyperspherical ap-
proach to a four-electron atomic system.

In the hyperspherical method, 3N dimensional con-
figuration space of an N -electron atom with the nu-
cleus at the center is parametrized by a hyperradius
R =

√
r21 + · · ·+ r2N , characterizing the mean square of

the size of the system, and by (3N−1) bounded hyperan-
gles Ω, describing the relative positions of the electrons.
In hyperspherical coordinates, the Schrödinger equation
can be written as[

−1
2
∂2

∂R2
+Had(Ω;R)− E

]
ψ = 0, (1)

where Had(Ω;R) is the adiabatic Hamiltonian which de-
pends parametrically on R. Within the adiabatic approx-
imation introduced by Macek [3], the total wavefunction
for the n-th state in channel µ can be written as

ψµn = F n
µ (R)Φµ(Ω;R), (2)

where F n
µ (R) is the hyperradial function which measures

the size of the state; Φµ(Ω;R) is the hyperspherical adia-
batic channel function, which contains all the information
about electron correlations for states within channel µ.
The channel function Φµ(Ω;R) and its associated adia-
batic potential Uµ(R) are obtained by solving the adia-
batic eigenvalue problem at each R,

[Had(Ω;R)− Uµ(R)] Φµ(Ω;R) = 0. (3)

We solved this eigenvalue problem for three-electron
atomic systems for each 2S+1Lπ symmetry [4], and for
a four-electron atomic system.

As an example of three-electron atoms, we show the
adiabatic potential curves for Li(2Se) states in Fig. 1.
At large R, each curve approaches the two electron Li+

states: The potentials can be classified into three group-
s by their asymptotic limits. The first group consist-
s of a single curve – the lowest curve, labeled ‘I’ in
Fig. 1. This curve approaches the Li+(1s2 1Se) state
as R → ∞. This curve supports the ground state and

the 1s2ns 2Se (n ≥ 2) singly excited states. The second
group, labeled ‘II’ in Fig. 1, consists of potential curves
that approach the 1snl(n ≥ 2) singly excited states of
Li+ at large R. These curves support doubly excited s-
tates. The third group, labeled ‘III’, consists of potential
curves that approach the nln′l′(n, n′ ≥ 2) doubly excit-
ed states of Li+ at large R. These curves support triply
excited states. Clearly, the avoided crossings among the
different groups are very sharp. Thus, the hyperspherical
adiabatic channels can be used to separate singly, doubly,
and triply excited states.
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FIG. 1. Hyperspherical adiabatic potentials for the 2Se

symmetry of Li.

To identify the features that characterize the adiabat-
ic channels among the triply excited states, we examined
the channel functions, Φ’s. We classify triply excited s-
tates of Li in the 2l2l′2l′′ and the 2l2l′3l′′ manifolds by
visualizing the channel functions in the body-fixed frame.
We found that angular correlations play an important
role in characterizing the 2l2l′2l′′ intrashell states. By
examining the wavefunctions of the three electrons at
the same distance from the nucleus, we found that these
intrashell states are distinguished by their distributions
in the three relative angles (See Fig. 2 for the definition
of the angles). By examining the wave functions in the
body-fixed frame, we identified three basic modes of the
three relative angles. In Fig. 3, we plotted the equiden-
sity surfaces of internal wavefunctions for the 2l2l′2l′′ in-
trashell states. These surfaces can be grouped clearly
into three types. In fact, the major distinction being
that in group A, the three electrons form a coplanar e-



quilateral triangle; in group B they form an equilateral
triangle but not coplanar, and in group C the three elec-
trons are coplanar but not allowed to make an equilateral
triangle. The ‘forbidden region’ for the latter two groups
originates from the quantum symmetry in that a state
with well-defined quantum numbers L, S, and π would
incur nodal surfaces in a multidimensional wavefunction.
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FIG. 2. Definition of the three angles used to describe the
three electrons on a sphere. The three electrons form a σ
plane. On the plane (the right figure) the three electrons are
confined to a circle.
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FIG. 3. The equidensity surface plots of the three-electron
wavefunctions for the eight intrashell states at r1 = r2 = r3.
The surface represents 60% of the maximum density. Each ‘s-
lice’ represents the whole range of the three angles (0 ≤ θ ≤ π,
0 ≤ η ≤ π, −η ≤ φ ≤ η).

We also examined the internal wavefunctions for the
2l2l′3l′′ intershell triply excited states of Li. For these
states, radial correlations as well as angular correlations
play an important role in the classification. A new quan-
tum number was introduced to describe the symmetric

and antisymmetric stretches between the two inner elec-
trons with the third one.
The next major step is to understand the four-electron

atomic systems, where one can expect much richer elec-
tron correlation effects. We implemented a pilot calcu-
lation for Be within the s4 configurations, and result-
ing hyperspherical adiabatic potential curves for the 1Se

symmetry are shown in Fig. 4. The general appearance
of the adiabatic potentials does not differ markedly from
those of three-electron atoms such as Li. At large R,
each curve converges to the three-electron Be+ states.
The groups labeled ‘I’, ‘II’, and ‘III’ consist of poten-
tial curves that support singly, doubly, and triply excit-
ed states of Be, respectively, and they are similar to the
three-electron systems as shown in Fig. 1. In addition
to these three groups, we can clearly observe the fourth
group, labeled ‘IV’. The curves in the fourth group con-
verge to the triply excited states of Be+ and they support
quadruply excited states of Be. We note that the avoided
crossings among the different groups are very sharp. This
suggests that quadruply excited states of Be are rather
stable against autoionization to singly, doubly, and triply
ionized states of Be. Our next goal is to examine the hy-
perspherical potentials including the effects from higher
angular momentum states and to classify the quadruply
excited states.
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FIG. 4. Hyperspherical adiabatic potential curves for the
1Se symmetry of Be within the s4 configuration.
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