Manipulating the Motion of Large Molecules: Translation, Rotation, and Conformer Selection

Jochen Küpper

Fritz-Haber-Institut der MPG, Berlin, Germany

Large molecules have complex potential-energy surfaces with many local minima. They exhibit multiple stereo-isomers, even at the very low temperatures of ~1 K in a molecular beam. We have developed methods to manipulate the motion of large, complex molecules and to select their quantum states.\(^1\) We have exploited this state-selectivity to spatially separate individual conformers (structural isomers) of complex molecules\(^2\) and to demonstrate unprecedented degrees of laser alignment and mixed-field orientation of these molecules.\(^3\)

Such clean, well-defined samples would strongly benefit or simply allow novel experiments with complex molecules, for instance, femto-second pump-probe measurements, X-ray or electron diffraction in the gas-phase, high-harmonic generation, or tomographic reconstructions of molecular orbitals. These samples would also be very advantageous for metrology applications, such as, for example, matter-wave interferometry or the search for electroweak interactions in chiral molecules. Moreover, these samples provide an extreme level of control for stereo-dynamically controlled reaction dynamics of complex molecules.

In this presentation, I will describe and compare the manipulation methods employed and our respective results. In addition, I will discuss the prospects of imaging experiments using the upcoming X-ray free-electron lasers.

---