Fractional Instability of a Phase Stabilized Carbon Nanotube Fiber Laser Frequency Comb

Jinkang Lim¹, Kevin Knabe¹, Yishan Wang^{1,2}, Rodrigo Amezcua-Correa³, François Couny³, Philip S. Light³, Fetah Benabid³, Jonathan C. Knight³, Kristan L. Corwin¹, Jeffrey W. Nicholson⁴, and Brian R. Washburn¹

¹116 Cardwell Hall, Department of Physics, Kansas State University, Manhattan, KS 66506, USA
²State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, PRC
³Centre for Photonics and Photonics Materials, Dept. of Physics, University of Bath, BA2, 7AY, UK
⁴OFS Labs, Somerset, NJ 08873 USA

Synopsis: A 167 MHz repetition frequency fiber ring laser employing single walled carbon nanotubes modelocker is phase-stabilized for the first time. The stability of the frequency comb generated by this laser has been measured by comparing it with a figure eight laser (F8L) and by beating it against a 1532 nm CW laser stabilized to a v_1+v_3 overtone transition of an acetylene-filled kagome photonic crystal fiber reference. The result shows the stability of comb to be ~10⁻¹¹ in 1 s averaging time.

Phase-stabilized fiber-laser based frequency combs are indispensable tools for optical frequency metrology. The erbium doped fiber ring laser is passively mode-locked using single walled carbon nanotubes (SWCN) as a saturable absorber. The SWCN are optically attached to a fiber connector [1]. In this way the laser shows a substantial simplicity in its design and relatively high repetition frequency (f_{rep}) . Our carbon nanotube fiber laser (CNFL) has a 167 MHz repetition frequency and produces 1 mW of average power at 40 mW of pump power. The pulse trains are injected into a parabolic pulse amplifier which allows high power pulse amplification, and then a supercontinuum (SC) spectrum is generated with a highly nonlinear fiber [2-4]. The offset frequency (f_0) is detected using the f-2f self referencing method. The control of both f_0 and f_{rep} is accomplished in a similar manner as reported in prior work [5]. The f_{rep} was phase-locked using feedback control with piezo-electric transducer (PZT) fiber stretcher in the laser cavity. The f_0 was simultaneously phase-locked using feedback control of 980 nm pump power. The 10 MHz reference signal from a GPS disciplined Rb clock (Rb/GPS) referenced all synthesizers and frequency counters (Agilent 53132A). The CNFL comb was phase-locked over 4 hours while f_{rep} and f_0 were simultaneously counted and then their fractional instabilities were calculated. The f_{rep} dominates the stability of the optical frequency comb with ~0.4 mHz deviation at 1 s averaging time in the RF domain, corresponding to ~400 Hz in the optical frequency domain, similar to that of a F8L comb. The f_0 instability is negligible although the f_0 shows a wider linewidth and side peaks probably due to the lower operating pump power and phase noise. We beat the CNFL comb against a 1532 nm CW laser stabilized to a v_1+v_3 overtone transition of an acetylenefilled kagome photonic crystal fiber reference [6]. This measurement shows the instability of comb to be ~10⁻¹¹ in 1 s averaging time limited by Rb/GPS (Fig. 1). At the longer averaging time, the stability is dominated by the acetylene reference.

Fig. 1. The fractional instability of the beatnote between an acetylene stabilized CW laser and the CNFL frequency comb.

This research was supported by the AFOSR under contract No. FA9950-08-1-0020.

References

- [1] J. W. Nicholson et al, Opt. Express **15**, **9176-9183** (2007).
- [2] J. W. Nicholson and D. J. DiGiovanni, IEEE Photon. Technol. Lett. **20**, 2123-2125 (2008).
- [3] J. W. Nicholson et al, Opt. Lett. 28, 643-645 (2003).
- [4] Y. Wang et al, in *Proceedings of Frontiers in Optics*, *FWF5* (2008)
- [5] D. J. Jones et al, Science 288, 635-9 (2000).
- [6] K. Knabe et al, in Proceedings of Conference on
- Lasers and Electro-optics (CLEO), JFA5 (2008).