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Abstract

The interaction between intense laser pulses and matter can drive a wide range of processes:

for example, atoms or molecules can undergo breakup to create new systems, excitation can

occur to create products with different properties and reactivities, and chemical reactions can

be affected in ways that enhance/dehance the probability of specific outcomes. Changing the

incident light can alter all of these aforementioned processes, giving rise to the possibility of

coherent control in an experimental setting. In order to understand the control provided over a

specific observable, it is necessary to develop a theory that allows us to understand the physical

mechanisms that contribute to this control, as well as how these mechanisms depend on the

parameters of the incident light. This thesis will focus on our group’s parametric formalism for

carrier-envelope phase (CEP) and multi-color control. Our formalism, outlined in Chap. 2, allows

any observable to be expressed in terms of the interference between different photon pathways, and

explicitly shows how changing the CEP or the relative phase between different colors controls this

interference. Application of our formalism to understand control over dissociation is demonstrated

in Chap. 3 and Chap. 6. Here, knowledge of system allows us to predict the most likely pathways

taken during breakup, and the construction of observables in terms of these pathways allows

for quantitative, a priori predictions about control. In Chap. 4 and Chap. 5, it will be shown

that our formalism can also allow for the extraction of important physical information from a

known result. Chapter 4 will focus specifically on the problem of characterizing the CEP of a

pulse, showing that our formalism provides not only a deeper understanding of currently used

experimental techniques, but can also offer a slight improvement in the precision of the extracted

phase. Chapter 5 will focus on directly extracting photon pathways from a measured spectrum,

allowing us to identify the exact physical mechanisms that must have been present to create a

given feature in a measured spectrum.
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Chapter 1

Introduction

1.1 Opening Remarks and Thesis Structure

Much of our knowledge about atoms and molecules comes from studies involving the interaction

between light and matter. From early measurements in spectroscopy, to modern studies using

ultrafast lasers to probe atomic/molecular processes on their characteristic timescale, results

describing light-matter interactions have long elucidated the properties of both the matter and

light being studied. In this thesis, I will continue this line of work by presenting and applying

our group’s parametric formalism for understanding the interaction between intense, ultrashort

laser pulses and atoms/molecules. This formalism provides a simple theoretical framework for

understanding the features of an observable in terms of the different physical pathways that the

system can take to a given final state, and allows us to make quantitative, a priori predictions

about the control that can be provided over the observable by altering certain parameters of the

laser. Furthermore, our formalism allows us to extract information about these pathways (and the

light itself) from a given spectrum, providing a deeper understanding of the physical mechanisms

involved in the process of laser excitation..

This chapter will serve to introduce many of the ideas that will be encountered throughout

the remainder of the thesis. We will outline some key historical findings that put modern work

in context, provide a review of relevant results in intense, ultrashort physics, and discuss other

approaches used to understand these results. The limitations of current methods and the need

for new methods will be discussed — specifically when it comes to understanding certain aspects
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of strong-field, coherent control.

1.2 The Nature of Matter

1.2.1 Discovery of Atoms and Molecules

One of the most fundamental questions science aims to answer is “What is the nature of matter?”.

Inquiries into this question far predate scientific modernity, with writings from over 2000 years

ago already weighing in on the subject. Famously, the Greek philosopher Democritus argued that

matter was composed of tiny, indivisible particles known as atoms. In this view, matter could

only be split into pieces a finite number of times before you were left with a fundamental building

block that could no longer be broken into constituent parts. By contrast, Aristotle and others

suggested that matter was continuous, and that no such smallest building block of matter existed.

For over two millennia, this question remained mostly in the realm of philosophy — with no way

to examine such small things directly, scientific inquiry into the subject was quite difficult.

One of the first attempts to think about the composition of matter in a scientific fashion

came from Daniel Bernoulli in 1738 [8, 9]. Bernoulli, who wanted to understand experimentally

determined gas laws seen in chemistry, was able to mathematically derive Boyle’s Law (which

states that pressure and volume are inversely proportional for an ideal gas) by assuming gases

were made of discrete particles that interacted with each other and their container through the

well-understood principles of classical mechanics. However, this idea gained very little traction in

the scientific community until nearly a half-century later when John Dalton proposed his atomic

theory to explain a number of additional laws observed in chemistry [10].

Dalton’s atomic theory can be summarized by three ideas: all elements are made up of discrete

atoms that cannot be further broken down by chemical means, atoms of an individual element are

indistinguishable while the atoms of any two distinct elements are fundamentally different, and a

given compound is formed by atoms of different elements joining together in a fixed ratio [11].

In this view, chemical reactions are merely a rearrangement of atoms. Because atoms cannot be

destroyed via chemical means, his atomic theory explains the (then) recently discovered law of

conservation of mass [12], which was observed in comparisons of product and reactant masses
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in chemical reactions. Similarly, the idea that a given compound is composed of a fixed ratio

of atoms readily explains why compounds always have a fixed mass ratio of their constituent

elements — the law of definite proportions [13]. The theory also provides explanation for why

elements that can combine to create multiple, distinct compounds always create compounds

where the mass ratio of a given element is the ratio of two integers (e.g., FeO and Fe2O3 were

both observed by Dalton and shown to have an oxygen mass ratio of 2 : 3 for a fixed amount of

iron) —the law of multiple proportions [10, 13].

Although the atomic theory had many prominent doubters in its early years, its continued,

successful application for explaining observed phenomena would build evidence for the theory

throughout the mid- to late-nineteenth century. Bernoulli’s idea of treating gases as a collection of

discrete particles was developed into to a much more rigorous kinetic theory of gases that allowed

for concepts such temperature and heat transfer to be understood in terms of the kinetic energy

of atoms/molecules in a gas [14–16]. Eventually, in 1907, Einstein would develop a kinetic theory

of his own that could quantitatively explain the observation that small particles undergo erratic

motion when suspended in water (Brownian motion). In Einstein’s theory, Brownian motion was

viewed as the result of collisions between the suspended particle and water molecules [17]. The

experimental verification of Einstein’s theory [18] is generally viewed as a turning point where

atomic theory became almost universally accepted among scientists [19].

During the period of time that atomic theory was still debated, experiments demonstrated

that neutral elements could be forced to eject negatively charged particles and that the mass-

to-charge ratio of these particles was independent of the matter from which it came [20]. This

led to the realization that negatively charged particles (electrons) must exist inside of all atoms.

Because of the neutrality of elemental atoms, it was implied that positive charges must also exist.

While various models for the distribution of positive and negative charges inside of the atom were

proposed, a series of famous scattering experiments in the early twentieth century led by Ernest

Rutherford showed that the positive charge of an atom was entirely focused in one small region

(the nucleus) [21]. By 1920, Rutherford would show that a hydrogen nucleus could be extracted

from a nitrogen nucleus through atom-atom collisions [22] — leading to the understanding that

all nuclei are composed of some number of hydrogen nuclei, eventually named the “proton”.
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Although scientists would add details to our understanding of atomic composition over the

years, the general idea of atoms being composed of a positive nucleus with bound negative

electrons has been the same for over a century. While these early experiments gave us amazing

insight into the composition of matter, they didn’t tell us much about the properties of individual

atoms or molecules. A thorough understanding of the internal structure of atoms/molecules, and

how it leads to their individual properties, would require a number of studies aimed at probing

atoms and molecules on a deeper level. Many of the studies that would eventually provide this

understanding have been carried out by examining the intricate relationship between light and

matter. In many ways, these studies serve as a precursor for the probing of matter by intense,

ultrashort pulses that will be examined in this thesis.

1.2.2 Early Experiments Probing Matter with Light

Some of the first experimental insight into the strange internal structure of atoms and molecules

came before Dalton’s atomic theory was proposed, let alone accepted. In the early nineteenth

century, both William Wollaston and Joseph Von Fraunhofer independently discovered that when

sunlight reaching the earth’s surface is split into its constituent colors, a number of dark lines

appear in the spectrum [23, 24]. Later experiments throughout the century would show that

similar dark lines appeared in light that was passed through gaseous samples; additionally, it was

found that these samples could be forced to emit light at specific, discrete frequencies through

the addition of heat or electricity [25]. In the eighteen sixties, Kirchoff and Bunsen showed that

(for a given gaseous sample) the dark lines of an absorption spectrum are at the same frequencies

as the bright lines of an emission spectrum, and that these special frequencies differed for gaseous

samples of different chemical compositions. These findings led them to propose that elements

only emit/absorb light at specific, discrete frequencies, and that these frequencies are unique to

each element [26]. Eventually this idea would allow for the identification of specific elements

in the sun’s atmosphere, and would be applied by Kirchoff and Bunsen to discover various new

elements [25].

As atomic theory was slowly accepted by scientists, it became clear that the discrete absorp-

tion/emission spectra of given elements was related to the properties and internal structure of
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the atoms that composed them. Patterns in the absorption spectrum of hydrogen were identified

by Balmer, who was able to find a mathematical formula that not only fit all previously observed

lines in the hydrogen spectrum, but that predicted additional lines in the ultraviolet and infrared

regions that would later be found. This clearly demonstrated that some mathematical laws must

exist to govern how atoms absorb/emit light, even if the physical reasons behind these laws was

not at all understood [27].

The next piece to the puzzle came from a series of studies in the late nineteenth and early

twentieth centuries on the photoelectric effect. Hertz first discovered that ultraviolet light incident

upon a metal plate can result in the emission of electrons. Lenard expanded these studies to

show, among other things, that there exists a cutoff frequency below which no electrons are

ionized. These findings were puzzling, as classical electromagnetism predicted that the energy of

the incident light depended only on intensity and not frequency [28]. Einstein would eventually

provide a solution to this problem by proposing that light is composed of particles called photons,

each carrying energy E = ω. Within this description, electrons would be emitted with a maximum

energy of E = ω−W , where W was the “work function” describing the amount of energy binding

the electron to the metal. The cutoff frequency for ionization would occur when ω < W [29]. It

is interesting to note that while Einstein’s theory of light quantization accurately described the

results seen in the photoelectric effect and was ultimately correct, the eventual development of

quantum mechanics would show that the photoelectric effect can be fully understood without

taking the quantum nature of light into account.

Niels Bohr was the first to put the pieces together; by combining conservation of energy,

Einstein’s idea of photons, and the observation that atoms could only absorb/emit light at specific

frequencies, Bohr suggested that the electrons within at atom have quantized energy levels.

Within this picture, atoms can only absorb a photon at a particular frequency if the energy of

that photon is resonant with the energy difference between the atom’s discrete energy levels. Just

as atoms could absorb these resonant photons to “jump” to higher energy levels, they could also

emit photons when falling back into the lower levels — explaining why atoms emit and absorb at

the same frequency [30].

These early experiments on how light interacts with gas-phase elements and metallic sur-
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faces led directly to our current theoretical understanding of the internal structure of atoms

and molecules. Bohr eventually developed a simple theory of quantization that succeeded in

predicting Balmer’s formula for the absorption lines in hydrogen. Louis de Broglie would also

attempt to explain the quantization of atomic energy levels with his conjecture that electrons

have wave-like properties, in addition to the particle-like properties that had been previously ob-

served [31]. While neither of these theories turned out to give the correct quantitative results

for complicated atoms, they did lead to the eventual development of quantum mechanics and

the time-dependent Schrödinger equation (TDSE) — a theory the provides our best current un-

derstanding of atomic and molecular properties, and that predicts both energy-level quantization

and wave-like properties of matter [32].

1.2.3 Early Laser Experiments

While early experiments on light-matter interactions led to the development of quantum me-

chanics, the theory of quantum mechanics would in turn create many predictions that led to

experimental advances in the light sources used for probing systems — most importantly, the

laser. The TDSE predicts that not only can atoms and molecules be excited to higher energy

states by a resonant source of light, but that these systems can be driven down from excited

states to lower energy states by a resonant light source as well. Due to conservation of energy,

this process causes the emission of a photon at the resonant frequency. This process, known as

stimulated emission, was first described by Einstein [33]. It was quickly realized that this process

could serve to produce many photons of the same frequency, thus providing a method for creating

a coherent, nearly monochromatic beam of light. Within 43 years of Einstein’s work, such devices

were constructed to produce light in the microwave [34] and visible regions [35] of the spectrum.

The years following the invention of the laser led to a revolution in the ability to accurately

study atomic and molecular processes. The near monochromaticity of laser light allowed for

far greater resolution in measurements of atomic/molecular energy levels, resulting in highly

accurate measurements of hyperfine structure in atoms and molecules — small splittings in energy

levels that arise from the interaction between the nuclear and electron magnetic dipoles, i.e.,

spin-spin interaction — and resolution of molecular rotational and vibrational structure [36–41].

6



Additionally, the much larger intensity of lasers provided a much larger numbers of photons to

drive transitions in a system. This opened up the possibility of studying systems that were not

responsive enough to measure with weaker, traditional light sources [42].

The high intensity of lasers also provided a means for measuring processes where multiple

photons are absorbed or emitted simultaneously. The ability to drive two-photon processes led to

the creation of Doppler-free two-photon spectroscopy — a method that allowed for measurements

of the 1s to 2s transition in atomic hydrogen [43], and for accurate resolution of the energy

associated with a number of two-photon hyperfine transitions [44–48]. Two-photon spectroscopy

is still being applied to make increasingly accurate measurements of the 1s to 2s transition in

hydrogen [49–51], with measurements of the same transition in anti-hydrogen being made recently

as well [52,53]. The high accuracy of these measurements provides a means for probing physical

phenomena beyond those predicted by the TDSE, allowing for tests of quantum electrodynamics

and the standard model — see, for example, Refs. [54–57] and the references therein.

As lasers with increasingly high intensities became available, the observation of processes that

require the absorption of far more than two photons became possible. Such multiphoton processes

were observed in transitions between bound states [58], and in ionization/dissociation where a

system that has already experienced breakup absorbs additional photons in the field [59–62].

This second phenomenon, known as above threshold ionization/dissociation (ATI/ATD), was first

observed by Agostini et al in the photoelectron spectrum of xenon [59]. The spectrum clearly

showed not only a peak in the photoelectron spectrum at the energy predicted by ionization

of the system by six photons (the minimum number required to overcome the atoms binding

energy), but also showed a less probable, subsequent peak spaced by one photon in energy that

was associated with absorption of an additional photon by the already ionized electron. With

modern lasers, an entire series featuring more than a hundred of these peaks, separated by the

energy of a single photon, can be observed [63].

1.2.4 Pulsed Laser Experiments and Dynamics

While the list of individual techniques in spectroscopy and the important measurements that came

from them is far beyond the scope of this thesis, it suffices to say that laser spectroscopy has

7



provided our most accurate and complete idea of the internal structure of atoms and molecules. In

addition to these structural insights, lasers also allowed for the first measurements of atomic and

molecular dynamics on their intrinsic timescales. While early laser experiments made use of nearly

monochromatic light with very long pulses (infinite in the purely theoretical case of a perfectly

monochromatic light), modern laser technology allows for the creation of pulsed lasers that exist

only for a very small duration of time (but have a correspondingly larger bandwidth in frequency).

It is standard convention to refer to the nearly monochromatic lasers as continuous-wave, while

referring to lasers with short duration as pulsed lasers — with “nearly monochromatic” typically

being defined by the relative size of the bandwidth in frequency and the energy levels of the

system being studied.

Pulsed lasers can be thought of as akin to cameras; if you wish to photograph an object that

is moving, it is important to have a shutter speed fast enough that the camera only receives light

during a time period where the object’s motion is negligible. A shutter speed that is too slow

will allow the camera to receive light from the object while it is at multiple positions throughout

its trajectory and, thus, create a blurry image. Similarly, measuring an observable produced by

the interaction of a pulsed laser with an atom/molecule provides information about the state of

the system at some time during the duration of the pulse. In order to get a clear, time-resolved

picture of how the state of the system changes, the laser pulse must be short enough that any

changes to the system are negligible during the pulse’s duration. Because nuclear processes in

molecules typically occur on the picosecond or femtosecond timescale, while electronic processes

tend to occur on the attosecond timescale, laser pulses with durations on these timescales are

necessary for studies of nuclear and electronic dynamics.

With the advent of laser pulses in this picosecond/femtosecond regime, probing the temporal

dynamics of molecular processes became possible for first time [64–69]. Early picosecond studies

allowed for time-resolved measurements of changes in excited state populations, providing orien-

tational relaxation times for molecules that had previously been aligned with a laser pulse [70],

vibrational relaxation times in excited molecules [71], and decay times for cis-trans isomeriza-

tion processes [72]. Studies of changes in vibrational population over time were able to show

clear quantum interference effects for heavy nuclei where such effects were not expected — with
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studies on anthracene showing revivals of excited vibrational-state populations with well-defined

periods, as opposed to the anticipated exponential decay [73, 74]. Similarly, early femtosecond

pulses provided the means to resolve the dynamics of bond breaking and formation that occur

during chemical reactions. The first of these experiments focused on molecular breakup, showing

how the triatomic system ICN split apart to form I+CN and monitoring the rise and decay of

intermediate transition states throughout the process [75, 76]. Soon thereafter, time-resolved

studies were carried out on the bond formation H+CO2 → OH + CO [77], and on the effects of

solvents on dissociation in I2 [78].

Since the production of the first attosecond pulse in 2001 [79], there has been considerable

interest in studying the fast electronic motion in atoms and molecules in a manner similar to

the way nuclear motion was studied with pico- and femtochemistry [80]. While meaningful

results have come at a much slower pace (compared to the first twenty years of pico- and

femtochemistry), some initial progress has been made. For example, attosecond experiments

have studied the role of electron correlation in the autoionization of atoms, diatomics, and small

polyatomic systems [81–84]. Additionally, studies have claimed to answer questions about the

time it takes for ionization to occur by using attosecond streaking measurements to infer relative

ionization times between electrons in different orbitals [85, 86]. However, the interpretation

that the differences seen in these measurements were caused by photoemission delays has been

debated; additionally, attempts to extract such delays from calculations have failed to produce

agreement with the experiment (see discussion in Ref. [87] and the references within).

More recently, the use of free-electron lasers to generate attosecond pulses in the x-ray regime

has been achieved [88–90]. Such pulses have photon energies high enough to ionize tightly

bound, inner-shell electrons, and provide the temporal resolution necessary for studying how the

remaining electrons adjust to the “hole” left behind by the ionized electron. Studies of this nature

have probed the dynamics of the remaining electrons and examined Auger decay — the process

where an excited electron drops into the lower-energy hole and redistributes its excess energy to

other electrons in such a way that ionization occurs [91–95]. Some believe that promising early

work with x-ray attosecond pulses suggests that the use of free-electron sources could provide a

breakthrough in attoscience, although others remain skeptical about whether attoscience will ever
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be able to provide the level of understanding for electron dynamics that pico- and femtochemistry

did for nuclear dynamics [96]. Regardless, attosecond science remains a popular research topic

and a candidate for furthering our understanding of atomic and molecular processes.

1.3 Carrier-Envelope and Multi-Color Control

Section 1.2 illustrates how integral the role of laser-matter interactions has been for furthering our

understanding of both the internal structure of atoms/molecules and the dynamics that occurs

in these systems as they undergo chemical processes. We now turn our attention to the specific

type of laser-matter interaction studies that this thesis will focus on: the use of pulsed, ultrashort

lasers to control atomic and molecular processes. The ability to produce pulses that have temporal

durations on the order of (or smaller than) electronic and nuclear motions not only allowed for

time resolution of atomic and molecular dynamics, it also opened up the possibility of using lasers

to actively alter these processes as they occur to produce a favorable outcome (coherent control).

While there are numerous laser parameters that can be varied to obtain control, we will restrict

ourselves to control via the carrier-envelope phase (CEP) of a single pulse and the relative phase

between individual components of multi-color pulses. The CEP of a laser is given by the offset

between the envelope of the pulse’s electric field, E0(t), and its oscillating carrier wave — denoted

by ϕ in the field E(t) = E0(t) cos(ωt + ϕ). Similarly, the relative phase between two colors ω1

and ω2 in a multi-color pulse is defined as the difference between the phases ϕ1 and ϕ2 in the

field E(t) = E1(t) cos(ω1t+ ϕ1) + E2(t) cos(ω2t+ ϕ2)

Changing the CEP of a pulse will alter the electric field experienced by the system and,

therefore, can produce changes in a measured observable. These changes in observables are

negligible for long pulses approaching the continuous-wave limit — where the number of cycles is

much larger than one — but become pronounced for the few-cycle pulses common in ultrashort

physics. The ability to alter the CEP of an incident pulse to change the outcome of an experiment

has led to interest in using the CEP as a means for coherent control. The first experimental

observation of the CEP dependence of physical observables came from studies on photoionization

in noble gases, which showed that the direction of the emitted electron is sensitive to the CEP of
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the pulse [97]. Later experiments would directly measure this effect as a function of the CEP [98,

99], discover that double-ionization of atomic systems can be controlled by the CEP [100], and

show that the direction of electron emission could also be controlled in molecular ionization [101].

Carrier-envelope phase effects can also be observed in nuclear dynamics, where studies show

that the emission direction of nuclear fragments can be controlled by varying the CEP. Such effects

were first predicted for H+
2 and its isotopologues D+

2 and HD+, where it was proposed that the

momentum distribution, kinetic energy release spectrum, and total dissociation probability could

all be controlled by the CEP [102]. These predictions were realized experimentally for a number

of diatomic systems including H+
2 [103, 104], H2 [105], D2 [106], HD [107], CO [108, 109], and

DCl [110]. Eventually it was shown that the CEP can also be used to control branching ratios

in the isomerization and fragmentation of polyatomic molecules [111], or between the resultant

ionic states in LiH dissociation [112].

Multi-color control originated before the use of CEP control, as unlike CEP control it does not

require ultrashort pulses to be employed effectively. A general scheme for this type of control was

proposed by Brumer and Shapiro, where they demonstrated that control over physical observables

could be obtained using two pulses with central frequencies ω1 = ω and ω2 = 3ω (and, in later

work, with ω2 = 2ω) [113–115]. Because the absorption of three ω1 photons will leave the system

in a state with the same energy as the absorption of a single ω2 photon, these two pathways will

interfere to produce the observable. Simple calculations from perturbation theory show that this

interference can be controlled by varying the relative phase between the two pulses, with early

calculations predicting this control in IBr dissociation [113, 116].

The first experimental observation of ω-3ω, two-color control came from studies on the total

ionization yield of Hg [117]. Soon thereafter, similar studies demonstrated coherent control of

HCl [118,119], H2S [120], and CO [119]. Later studies would demonstrate that some observables

can also be controlled by the relative phase of pulses with ω1 = ω and ω2 = 2ω [114, 121–125].

It is worth noting that control over the total dissociation yield is not seen in this control scheme.

A number of works have also shown the branching ratios of dissociating molecules into different

product states can be controlled by both ω-2ω and ω-3ω schemes [121, 122, 126].

More recently, experiments that employ multi-color control on the attosecond level have
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become of interest — specifically, in the form of using attosecond pulse trains. Attosecond

pulse trains are simply a series of laser pulses, each separated by — and having a duration on

the timescale of — attoseconds. Such pulse trains are generated by combining a series of laser

pulses with commensurate frequencies, typically created through the process of high harmonic

generation. Varying the relative phase between the different colors used to construct the pulse

train provides a means for a multi-color control scheme using attosecond pulses. Pulse trains

provide a convenient means for attosecond control because they are more easily generated than

isolated attosecond pulses (which presents a number of technical challenges) [127–130].

1.4 Understanding CEP and Two-Color Control

Both experiment and theory have conclusively shown that it is possible to control a number of

physical observables for a variety of different systems by varying the CEP of a single pulse or

relative phase between multiple pulses. In order to go beyond simply demonstrating control, it

is ideal to have an ab initio theory that allows for predictions about the type of control that will

be available for a particular system and provides insight into how to increase the degree to which

control is possible over a given observable. In Chap. 2, we will introduce our group’s formalism

for understanding coherent control — which explicitly shows how different pathways interfere

to create a given observable, and shows how altering the CEP or delay provides control over

this interference. This formalism has been successfully applied to understand strong-field control

over a number of systems previously [7] [103, 104, 131–133], and the extension and application

of this formalism will be the focus of this thesis. In this section, we will review some other

commonly used methods for understanding intense, ultrashort physics in order to provide context

and illustrate the differences between our approach.

1.4.1 Numerical Solutions of the TDSE

The most obvious starting point for a theoretical understanding of CEP and multi-color control

is the TDSE. However, there are issues with directly solving the TDSE in order to understand

control. One such problem is that exact solutions cannot be obtained analytically for even the
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simplest atom or molecule in a pulsed laser field. It is, of course, possible to numerically solve

the TDSE in order to study how an observable depends that laser parameter. Unfortunately,

without an analytic expression for the observable, the information gained from such a method

is somewhat limited. For example, CEP control can be easily be observed in calculations of the

photoelectron spectrum of hydrogen; it can be seen that the spectrum oscillates with the CEP

at certain energies, and both the magnitude and periodicity of these changes can be observed.

However, such results cannot provide information about how the magnitude and periods of these

oscillations depend on other laser parameters (pulse length, intensity, wavelength, etc.) without

additional calculations that span a representative sample of the entire parameter space. Moreover,

they do not provide insight into the physical mechanisms that are responsible for this control —

information that is needed to extrapolate these findings to other systems where the contributing

mechanisms might be larger or smaller, or where new mechanisms might arise altogether.

In many ways, the limitations of understanding coherent control through direct solution of

the TDSE are similar to the limitations in understanding coherent control through studies of

experimental spectra. In both cases control can be observed, and, if calculations/experiments are

carried out for a large number of systems and laser parameters, patterns will begin to emerge.

Still, much is left to be desired in this understanding and an approach that provides an analytic

expression, especially one that can be understood in terms of physical mechanisms, can provide

additional information. The TDSE does provide some advantage over experiment in the sense

that solutions of the TDSE allow for more detailed studies where certain physical mechanisms

can be excluded from a solution in order to determine their effect on control. A calculation can,

for example, exclude permanent-dipole transitions and only include electronic transitions to study

the role of each in control.

Conversely, solving the TDSE also has some limitations that are more strict than in experi-

mental studies — specifically with regard to studying more complicated atoms or molecules. For

a simple system like atomic hydrogen with center-of-mass motion removed, a wavefunction must

be stored at all points on a grid of size NrNθNφ (where Ni is the number of points required for

a converged result for the radius, polar angle, and aziumuthal angle, respectively). For a three-

particle system, this product has six terms, and it is apparent that as the number of particles

13



increases the total number of data points will increase exponentially. Although basis expansions

and clever coordinate choices can be used to decrease the amount of information needed for each

new coordinate, this scaling still quickly causes issues with storing all of the relevant data points

in a computer’s memory. Because of this limitation, TDSE studies tend to focus on atoms and

molecules with a small number of constituent particles, or focus on calculations that artificially

reduce the degrees of freedom included in the calculation.

1.4.2 Perturbation Theory

One common approach to laser-matter interaction problems that does provide some physical

interpretation is lowest-order perturbation theory (LOPT). In general, perturbation theory allows

for the approximate calculation of the wavefunction to an order k that corresponds to the total

number of photons exchanged with the field; it also describes observables in terms of matrix

elements that represent transitions between different states. These two ideas allow us to interpret

the perturbative approximation of an observable in terms of the interference between different

total-photon pathways to a given final state. A simple example outlining the four lowest-order

pathways to the first peak in a photoelectron spectrum is shown in Fig. 1.1. In LOPT, only the

pathway associated with the smallest number of total photons expected to contribute at a given

energy is included in the calculation. For example, a LOPT calculation of the first peak in the

photoelectron spectrum corresponding to Fig. 1.1 would include only the pathway involving the
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Figure 1.1: Illustration of the total-photon pathways of order k (in the wavefunction) that contribute to the first
peak in a photoelectron spectrum. The arrows represent absorption/emission of photons at the central frequency,
the solid lines represent the initial and final energies of the system, and the dashed lines represent intermediate
state energies.
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absorption of a single photon.

Because of its interpretive power and its ability to provide an analytic expression that clearly

separates the more system-dependent quantities (matrix elements), LOPT is an important tool

in our theoretical understanding of how atoms and molecules behave in a laser field. Unfortu-

nately, due to the large number of photons exchanged, LOPT often breaks down for interactions

involving intense laser pulses [134]. For example, when the intensity is high enough that the

higher-order pathways in Fig. 1.1 occur with a large enough probability, the LOPT approxima-

tion of the first peak in the photoelectron spectrum will fail to reproduce the peak given by the

TDSE. When LOPT breaks down, it is still possible to calculate an accurate spectrum through

perturbation theory if enough orders are included. However, many orders are often needed for

a converged calculation and there is no a priori way to know how many orders to include for a

given field/intensity. This complicates the process of applying perturbation theory to make simple

predictions about two-color and CEP control in intense fields.

1.4.3 Floquet Theory

The shortcomings of LOPT for describing intense, ultrashort physics necessitates the use of

alternative approaches to understand physics in this regime. One common theory for under-

standing intense-field physics is Floquet theory. Floquet theory originated as a mathematical

theorem for linear differential equation of the form ẋ = A(t)x with a periodic coefficients

A(t + T ) = A(t). The theorem states that such problems are not required to have a peri-

odic solution x(t) = x(t+ T ), but are required to have a solution that can be separated into the

product x(t) = eiεtΦ(t) where Φ(t) = Φ(t+ T ) is a periodic function [135].

Floquet theory was first used in quantum mechanics for time-independent Hamiltonians with

spatial periodicity, such as an electron moving through a uniform solid where it sees the same

repeating interaction as it travels from one atom to the next. In this context, Floquet theory is

often referred to as Bloch’s theorem [136] — as it was rediscovered by Bloch in his treatment of

these spatially periodic systems. Floquet theory was eventually applied to atoms and molecules

in intense, purely monochromatic laser fields by taking advantage of the T = 2π/ω periodicity

of the laser’s electric field, E = E0 cosωt [137]. In applications of Floquet theory it is very
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common, though not necessary, to also expand the periodic portion Φ of the wavefunction in a

Fourier series to write Ψ(t) = eiεt
∑

n Φne
inωt [20, 137].

The equations produced for Φn in this Fourier-Floquet representation have the advantage of

being time-independent and tri-diagonal, and solutions of the equations have been carried out for

a variety of systems [138]. One of its most important features, however, is in its contribution to

understanding multiphoton processes on a conceptual level. Comparison of the Fourier-Floquet

equations to a more formal treatment that quantizes the electromagnetic field reveals that (within

the dipole approximation) the summation index n can be interpreted as the net number of photons

exchanged with the field [137]. The functions Φn therefore provide an amplitude that corresponds

to the probability of exchanging a net number of n photons with the field, and, thus, allow us to

interpret physical observables in terms of photon pathways associated with these exchanges.

The main limitation of Floquet theory is that it cannot be applied to ultrafast pulses where

the field is no longer periodic in time. Two-time formalisms [139, 140] and adiabatic Floquet

theories [141–143] that circumvent this issue have been developed and applied, allowing for the

treatment of systems interacting with pulsed lasers. However, while these extensions of Floquet

theory can provide an intuitive method for understanding a spectrum in terms of the interference

between different net-photon pathways, they do not provide a method for understanding how

these interferences change as a function of the CEP or relative phase. Without the ability to

understand the role of these phases in interference, straightforward application of Floquet theories

to understand control is somewhat limited without explicitly doing calculations for a given system.

1.4.4 The Three-Step Model and Strong-Field Approximation

The three-step model is another method that is commonly used for a conceptual understanding

of the physical mechanisms that contribute to ionization [144]. This ad hoc model breaks the

dynamics of an ionized electron in three steps. In the first step, ionization occurs as the electron

escapes the atom through the process of tunneling. Second, the ionized electron propagates away

from the resulting ion in the laser’s electric field (neglecting the effect of the Coulomb interaction).

Finally, the electron is, potentially, driven back towards the ion as the field oscillates to change

direction. This third step is essential in using the three-step model to understand high-harmonic
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generation [144, 145], above threshold ionization [59–62], and non-sequential double ionization

(see Ref. [146] and the references within).

While the three-step model is often used only for qualitative descriptions, it is possible to

model each of the individual steps using a combination of quantum and classical mechanics in

order to make quantitative approximations. In such approaches, tunneling ionization rates in

the first step are approximated to determine the distribution of ionization times — often using

the quasistatic Ammosov-Delone-Krainov (ADK) tunneling rate [147]. The electron propagation

in the second and third steps can be modeled classically by solving Newton’s equations for the

electron trajectories corresponding to ionization at the different times found in step one. Some

electrons do not return to the parent ion, the so-called “direct electrons”, and will simply leave

— for these electrons, the above steps are all that is needed to model the electron’s trajectory.

In contrast, some electrons will be driven back toward the parent ion, causing an interaction

between the two particles. This interaction can lead to two processes — rescattering and recom-

bination. Rescattering can cause a change in the energy of the electron, or — if the return energy

is larger than the ionization energy of the ion — a second ionization. Recombination can also

occur, where the electron becomes bound to the ion once more and emits a photon to account

for its lost energy. Both the rescattering and recombination that occur in the third step can be

modeled using a variety of methods — more details of calculations based on this model can be

found in Ref. [60] and the references within.

Results from these types of quantitative implementations of the three-step model can predict

a number of features in the photoelectron and high-harmonic spectra that have been observed

experimentally. However, these implementations cannot give quantitative agreement with spectra

nor can they predict all relevant features [60]. The theory is mainly used today due to its simple

ability to attribute certain observed phenomena to the types of (easily understood) classical

electron trajectories required to create them. Quantitative improvements can be made to the

various approximations used in each step of the model, however it is an ad hoc model and is

inherently limited by that fact. Unlike LOPT or Floquet theory, which come directly from the

TDSE and will always approach the exact result when high enough orders are included, there is

no way to systematically improve the three-step model in a way that is guaranteed to converge
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to the correct answer.

Although it can be viewed as a separate theory, in many ways the strong-field approximation

(SFA) is a fully quantum mechanical extension of the three-step model. In the SFA, the quantum

mechanical probability of ionizing with a given momentum p is approximated by using Volkov

states — exact solutions to the TDSE for a free electron in an electromagnetic field — in place

of the exact electron state that includes the effects of both the electromagnetic field and the

Coulomb potential. This approximation is somewhat analogous to the classical propagation in

the three-step model, which also ignores the Coulomb interaction. The resulting integrals are

carried out using the Born series, with only the first two terms of the Born series typically included.

These terms can be shown to correspond to direct electrons that do not rescatter from the parent

system and electrons that do undergo rescattering/recombination, further connecting to the ideas

of the three-step model.

The SFA was originally formulated for studying ionization by Reiss [148], although it is often

grouped with earlier, less exact theories formulated by Keldysh [149] and Faisal [150] — which

require tunneling or high frequency approximations, respectively [151]. This grouping is often

referred to as KFR theory for the initials of the contributing authors. Strong-field approxima-

tions were later extended to describe high-harmonic generation [152]. Calculations based on the

SFA can provide good qualitative (and, sometimes, quantitative) agreement for a number of

experimentally observed phenomena. Results are most accurate when applied to single ionization

from negative ions, where the Coulomb interaction experienced by the ionized electron is zero

to first order (neglecting polarization of the parent ion) [153, 154]. It also has been successfully

applied to understand ionization from neutral targets on a qualitative level, although the degree of

agreement with experiment and TDSE calculations is worse when interaction with the parent ion

becomes more important — with results sometimes being off by orders of magnitude [155, 156].

Modern versions of both SFA and tunneling theories have attempted to improve the agreement

of the theory with experiment and TDSE solutions. Tunneling theories have now been expanded

to include the effects of the dipole that were neglected in earlier works [157,158]. Improvements

of SFA are based on the idea of reducing the relevant matrix elements into a factorized form, with

each of the factors corresponding to to an individual step in the three-step model. By using intu-
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ition about the physical processes that occur during the individual steps, it is possible to improve

these factors in order to increase the overall accuracy of the complete matrix elements [159–162].

One common method of achieving this factorization applies the Feynman path integral formula-

tion of quantum mechanics — which allows for the expression of the relevant matrix elements

in terms of a sum over all possible trajectories the system can take between the initial and final

time. Such methods further connect the SFA to the three-step model, which is viewed in terms

of electron trajectories, and allow for the possibility of seeing exactly which trajectories are re-

quired to reproduce an experimental result. This second feature provides useful information for

understanding the physical phenomena that contribute specific features in a spectrum [159–161].

Strong-field approximations, in any form, suffer from a few issues that limit their applicability

to understanding control. First, SFAs make use of Volkov states that neglect the Coulomb

interaction; this approximation fails to correctly reproduce the observed physics for some systems.

Improvements upon SFA can be made by replacing Volkov states with Coulomb-Volkov states —

which approximately include the effect of the Coulomb interaction [163–165]. However, while the

use of Coulomb-Volkov states can improve agreement with experiment [166], discrepancies still

exist between Coulomb-Volkov theories and direct calculations from the TDSE [164]. Second,

the theory depends on the choice of gauge; for example, calculations carried out using velocity

and length gauge can give different answers [167, 168]. Finally, the strong-field approximation

does not provide a simple analytic description of how the transition amplitudes calculated within

SFA depend on the CEP or delay of a pulse — much like the TDSE it requires solving numerically

for every individual phase in order see the effects of changing those laser parameters.

1.5 Closing Remarks

As evidenced throughout this chapter, using light to better understand atomic/molecular structure

and processes has a long and rich history. In more recent years, it has become possible to use

lasers to control the dynamics of these systems on their intrinsic time scale. The potential

applications of controlling chemical reactions is of great interest and, as such, it is important

to develop theories that allow us to understand the type of control possible for a given system.

19



While many theories for ultrashort, intense laser physics exist, they are limited in their ability

to provide quantitative predictions about specific control mechanisms. They also tend to rely

on approximations that neglect some of the physics necessary to explain experimentally observed

phenomena.

The goal of this thesis will be to introduce and apply an essentially exact formalism that

allows for certain quantitative predictions about the types of control that can be obtained in

CEP and multi-color experiments. This picture will allow for the interpretation of observables in

terms of photon-pathways, much like perturbation theory and Floquet, that provide an intuitive

understanding of the processes that contribute to control. In Chap. 2 our group’s formalism will

be introduced, while in Chap. 3 and Chap. 6 we will apply our formalism to understand CEP

and multi-color control. Chapters 4 and 5 will demonstrate the ability to use our formalism to

extract information about both the pulse and system from experimental data sets; allowing for

us to better understand methods of pulse characterization, and to extract information about the

physical mechanisms that contribute to a given feature in a spectrum.
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Chapter 2

Parametric Formalism

As stated in Section 1.5, the goal of this thesis is two-fold. First, we will outline and apply our

group’s parametric formalism in order to make predictions about, and understand the physical

processes that contribute to, the control that is obtained over a given observable by varying the

the carrier-envelope phase or relative phases between colors. Second, we will address the inverse

problem and use our parametric theory to extract information about the system or laser from data

showing clear multi-color control or CEP effects. In this chapter, we will develop the parametric

theory for CEP and multi-color control upon which the remainder of the thesis will be based.

Similar derivations of our theory for single-color CEP control have been outlined and applied in

previous work [7] [103, 104, 131–133], while generalization to two- and three-color pulses exist in

unpublished work from our group [2,3]. We begin by examining the general assumptions that are

required for the results derived within our parametric formalism to hold.

2.1 Starting Points, Limitations, and Assumptions

The derivation of our formalism begins from the TDSE within the dipole approximation, and, as

such, the results derived are limited to systems with dynamics that can be accurately described by

this equation. Because the TDSE is a non-relativistic equation, it does inherently fail for heavy

atoms where bound electrons can reach relativistic speeds, for systems interacting with lasers

that produce breakup with particle speeds that approach the speed of light, or for laser intensities

large enough that pair-production of additional particles becomes relevant [169–175]. “Simpler”
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relativistic effects such as spin can be included in our theory by adding the spin portion of the

wavefunction as a direct product in the usual manner.

Additional constraints are applied on our formalism by making the dipole approximation. In

the dipole approximation, the vector potential associated with the laser’s electromagnetic field is

approximated as constant in space. Mathematically. this is equivalent to keeping only the first

term in the Taylor expansion of the spatial portion for the carrier wave of the vector potential —

ei2πk̂·x/λ ≈ 1 +O(x/λ), where λ is the wavelength of the light and x is the vector describing the

position of the charged particles in the vector potential. This approximation can be justified for

lower intensities, where ATI/ATD is negligible and ionization/dissociation occurs mainly through

bound-free transitions, by appealing to LOPT. In this case, the relevant limits of integration are

determined by the size of the bound system, implying that the dipole approximation is valid as

long as the wavelength of the light is much larger than the bound system.

While this justification of the dipole approximation is less applicable for higher intensities

where free-free transitions become important, the dipole approximation still typically holds for

intense field physics [176]; non-dipole effects are mostly observed when the wavelength of light

becomes smaller than to the size of the system being studied [177–183]. There are, however, two

exceptions worth noting: ponderomotive shifts and effects due to the magnetic field associated

with the pulse. Both of these effects have been observed even outside of the large system or

short wavelength limit.

2.1.1 Pondermotive Effects

Pondermotive effects occur in short pulses and result in a shift in energy of the fragments produced

during break-up, producing a spectrum with peaks at energies lower than would be predicted for

the absorption of a given number of photons from the initial state [185,186]. Classical calculations

have explained this shift in terms of the energy gained by charged particles as they traverse the

spatial gradient of the laser’s electric field [186, 187]. In these descriptions, the energy absorbed

from photons during break-up is distributed among the various degrees of freedom of the system,

with some of the energy being associated with the charged particles oscillating along with the

field — the ponderomotive energy. As the oscillating particles experience the field’s gradient and
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are pushed away from the spatial center of the pulse, this ponderomotive energy will decrease to

match the lessened field strength in these regions. This lost ponderomotive energy is equal to the

translational/rotational energy gained through interaction with the field’s spatial gradient; i.e.,

the ponderomotive energy is converted to the forms of energy that are detected in experiment.

These classical calculations predict that for long enough pulses, particles created during

breakup will have time to traverse the full spatial profile of the pulse and convert the entirety of

their ponderomotive energy into translational/rotational energy. In contrast, when shorter pulses

are used, particles will not have time to move a considerable distance through the spatial profile

of the field and only a portion of the ponderomotive energy will be be converted — resulting

in ponderomotive shifts for short pulses. For calculations carried out within the dipole approx-

imation, none of the ponderomotive energy can be regained because the vector potential and

associated electric field are constant in space. As such, discrepancies between the energies of

particles observed in experiment and calculation can occur for long pulses.

2.1.2 Effects of the Magnetic Field

By approximating the vector potential as constant in space, all magnetic forces are neglected in

the dipole approximation. Because the Lorentz force is proportional to the speed of the charged

particles, this is typically a small effect for non-relativistic particles traveling in short pulses.

However, previous theoretical work has found an intensity regime in which ionized electrons have

non-relativistic speeds, but still are considerably altered by the presence of a magnetic field [184,

188,189]. Such effects were found to be important when the value of the intensity I approaches

I = 8cω3, where c is the speed of light in a vacuum — for the commonly used Ti:sapphire laser

systems producing roughly 800-nm light, this corresponds to I = 5× 1015 W/cm2. These effects

can result in the failure of the dipole approximation even when the wavelength is much larger

than the system, provided the intensity is large enough.
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2.1.3 Choice of Electric Field

Within the dipole approximation, and using the length gauge, the TDSE becomes

i
∂

∂t
ψ(t) = [H0 − E · d]ψ(t), (2.1)

where H0 is the field-free Hamiltonian for the system being probed by the laser, E is the electric

field associated with the laser, and d =
∑
qiri is the dipole for the system (with qi and ri

being the charges and coordinates, respectively, of the system’s constituent particles). Atomic

units [190] have been used in Eq. (2.1) and will be used throughout this thesis unless explicitly

noted1. The choice of gauge is not important, as our theory can be equivalently derived with

other gauge choices.

Our theory is derived by exploiting certain properties of the electric field, and, therefore, will

only apply to interactions involving lasers with these properties. All results that follow will hold

for any field with the form

E(t) =
∑
s=1

Es(t) cos (ωst+ ϕs). (2.2)

Equation (2.2) allows for pulses of multiple colors to be combined, with Es(t) being the envelope

(including polarization) of an individual pulse with phase ϕs and central frequency ωs. Setting

ωs = sω will allow for a straightforward application of our theory to the multi-color control

involving a fundamental pulse E1(t) and its harmonics Es(t). Similarly, setting Es>1(t) = 0

allows us to study how varying the CEP, ϕ1, of a single-color pulse provides control for a given

observable. This thesis will only be concerned with classical, non-quantized electric fields. It is

possible, however, to derive our theory using a quantized field for interactions where the quantum

nature of light becomes relevant — i.e., for problems where the photon densities of the incident

pulses are not large enough to neglect the effect of the creation and annihilation of individual

photons.

It is worth noting that all dependence of the electric field on the parameters ϕs is explicitly

written in Eq. (2.2); the envelopes are not dependent upon these phases. Our formalism describes

1Atomic units set m = ~ = e = 1, where m and e are the mass and charge of an electron, respectively, and ~
is the reduced Planck constant.
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the types of control that can be obtained by varying these relative phases, and, as such, will not

apply to control obtained by varying the envelopes of the individual pulses relative to one another.

This does impose some limitations; for example, our formalism will not directly apply to two-color

pump-probe experiments where a pump pulse interacts with the system to facilitate a reaction,

and a subsequent probe pulse is introduced at various delays to study the resulting dynamics.

However, varying the phases in a multi-color harmonic pulse train can create a similar temporal

delay between the fundamental pulse and pulse train, and our formalism can be applied to this

form of pump-probe experiment.

Overall, the limitations imposed by starting our theory from Eq. (2.1) and Eq.(2.2) do restrict

us to a certain subset of experiments involving laser-matter interactions, however this subset

comprises a large portion of the intense, ultrafast physics being done in experiment. For ultrashort

laser pulses with intensities small enough to avoid relativistic and magnetic effects, the dipole

approximation can produce results that explain phenomena seen in experiment quite accurately

for most atomic and molecular systems. Similarly, with the notable exception of certain pump-

probe experiments, our theory will allow us to study a wide range of CEP and multi-color control

schemes.

2.2 Parametric Formalism Development

2.2.1 Derivation of Formalism

We begin by noting that the electric field in Eq (2.2) — and, thus the Hamiltonian in Eq. (2.1)

— are unchanged by the transformations ϕs → ϕs + 2π. Unlike the case of Floquet theory

(Sec. 1.4.3), where the periodicity in the equations of motion is with respect to the dependent

variable of time, the periodicity we take advantage of is with respect to independent parameters.

As such, our solution ψ(t) will feature the same periodicity in ϕs as the field itself — differing

from the Floquet formalism where solutions do not have the same periodicity in time as the

field, but instead require an additional phase eiεt. Therefore, we may express ψ(t) exactly as the
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discrete Fourier series

ψ(t) =
∑
n

ψn(t)e−in·ϕ. (2.3)

In Eq. (2.3), n = (n1, n2, n3...) is the vector that includes the Fourier summation index ns

for each pulse included in the field; similarly, ϕ is the vector containing the phase of each pulse.

For example, if a two-color field with frequencies ω1 = ω and ω2 = 2ω is used in Eq. (2.2), then

the sum will be over all integer values of n1 and n2 — a Fourier expansion in the two phases

ϕ1 and ϕ2. The convention of using negative or positive arguments in the imaginary exponential

terms is irrelevant mathematically because the sum is over both positive and negative values of

n; our choice is made specifically so that positive ns will be associated with photon absorption

rather than emission (see Sec. 2.2.2).

In order to make the physical meaning of ψn and n more apparent, we can include the

additional factorization ψn = Φne
−in·ωt — where ω is the vector containing the frequency of

each pulse. Substituting the resulting expression into Eq. (2.1) and using the linear independence

of the basis functions to equate like terms gives

i
∂Φn

∂t
= [H0 − n · ω] Φn −

1

2
d ·
∑
s

Es [Φn+δs + Φn−δs ] . (2.4)

In Eq. (2.4), the summation over s is understood to be over all pulses and δs is the unit vector

with element i given by δi,s; the pulse Es couples the state with ns to the states with ns ± 1

while leaving all other ni unchanged. For clarity, the equations for the two-color field used above

would be:

i
∂Φn1n2

∂t
= [H0 − n1ω − 2n2ω] Φn1n2 −

d · E1

2

[
Φ(n1+1)n2 + Φ(n1−1)n2

]
− d · E2

2

[
Φn1(n2+1) + Φn1(n2−1)

]
. (2.5)

2.2.2 Interpretation and Physical Meaning

As a direct consequence of Eq. (2.4), we can gain insight into the physical interpretation of

the summation indices n and Φn. At a time before the pulse is turned on, Eq. (2.4) clearly

describes states Φn that have energies shifted by E = E0 + (n1ω1 + n2ω2 + n3ω3 + · · · ) from
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the unperturbed energies E0 of the system (or, equivalently, as states existing in potentials that

are shifted down, or “dressed”, in energy by the same amount). As such, we can think of Φn as

describing states associated with the absorption of a total energy n1ω1 + n2ω2 + n3ω3 + · · · —

which is equivalent to stating that ns counts the net number of ωs photons absorbed to get into

a channel Φn from the initial state with with n = 0. This interpretation of n as counting the

net number of photons is also apparent when comparing Eq. (2.4) with Floquet theory, as our

theory is equivalent to the Fourier-Floquet representation in the continuous-wave limit. While the

interpretation of our formalism in terms of photons becomes more apparent with the additional

factorization ψn = Φne
−in·ωt, the interpretation is also true for ψn — which can be understood

as a state associated with the exchange of n photons with the field. As such, we will mainly work

with ψn in this thesis, except for cases where we wish to generate dressed potentials like those

discussed in Sec. 2.3.1 and Sec. 2.3.2.

A specific example illustrating how n can be determined for various pathways involved in the

ionization of hydrogen by the aforementioned two-color field is shown in Fig. 2.1 for clarity. The

initial state of the system clearly begins with n1 = 0 and n2 = 0, as the interaction with the field

has yet to occur and no energy has been absorbed. Every absorption/emission of a fundamental

photon takes the system from n = (n1, n2) → (n1 ± 1, n2). Similarly, the absorption/emission

of a second harmonic photon takes the system from (n1, n2)→ (n1, n2 ± 1). Because the order

in which photons are exchanged has no effect on the final values of n, permutations of pathways

are not shown in Fig. 2.1. For example, the pathway involving the absorption of ω2 followed

by the emission of ω1 is shown, but the pathway involving the emission of ω1 followed by the

absorption of ω2 is omitted. With the exception of these permutations, all pathways to the first

peak in the photoelectron spectrum involving the exchange of up to four total photons at the

central frequencies are shown.

2.2.3 Observables in Parametric Formalism

With the physical interpretation of n from Sec. 2.2.2, we can quantify what exactly is meant by our

goal of using information about physical pathways to make predictions for a given observable. The

probability associated with measuring a particular value λ for any observable with an associated
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Figure 2.1: Diagram illustrating photon pathways for the ionization of hydrogen from the n = 1 initial state
(E = −0.5 a.u.) in a field with ω1 = 0.6 a.u. (red arrow) and ω2 = 2ω1 (blue arrow). These photon sizes where
chosen to simplify the diagram by allowing for single-photon ionization via ω1 absorption. Final and initial energies
are shown by solid-black, horizontal lines; intermediate state energies are shown with dashed-black, horizontal
lines. Each arrow represents the absorption/emission of a single photon.

operator Λ satisfying Λ|λ〉 = λ|λ〉, can be written explicitly in terms of the wavefunction as:

dP

dλ
=
∣∣〈λ|∑

n

ψne
−in·ϕ〉

∣∣2 =
∑
n,n′

〈λ|ψn〉〈λ|ψn′〉∗e−i(n−n
′)·ϕ. (2.6)

Equation (2.6) immediately gives information about the pathways that can interfere to create

control within a given observable. Because all of the dependence of the observable on the phases

ϕ has been explicitly written (ψn is independent of ϕ), it is apparent that only interference

between pathways leading to states with different values of ns can be controlled by varying the

phase ϕs. As such, distinct pathways that end with the same values of n — such as the multiple

pathways shown in Fig. 2.1 that end with n = (1, 0) — will not contribute to CEP or multi-color

control.

As a simple example to illustrate how observables can be determined from pathways in our

formalism, we return to previous example from Fig. 2.1 of hydrogen ionization in a two-color field

comprised of ω1 = ω and ω2 = 2ω. For linearly polarized light, the photoelectron spectrum for

hydrogen is given by

dP

dE
=
∑
`

dP`
dE

=
∑
`

∑
n1,n2

n′1,n
′
2

An1n2`A
∗
n′1n
′
2`
e−i(n1−n′1)ϕ1e−i(n2−n′2)ϕ2 , (2.7)

where An1n2` = 〈E`|ψn1n2〉 is the projection of the energy-normalized continuum eigenstate |E`〉
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of hydrogen with energy E and angular momentum ` onto the component ψn1n2 of the final

wavefunction. From Eq. (2.7), we see that only the interference between pathways that end in

the same state |E`〉 produce interference that contributes to the photoelectron spectrum.

For the pathways in Fig. 2.1 — which includes all pathways involving the exchange of up to

four total photons from an initial state with ` = 0 and E = −0.5 a.u. — only two pathways will

interfere to provide control in ϕ over the photoelectron spectrum: the total two-photon pathway

to n = (−1, 1) and the total four-photon pathway to n = (3,−1). These pathways will create

the interference terms A−1,1,`A
∗
3,−1,`e

i4ϕ1e−i2ϕ2 (and their complex conjugates) for both ` = 0

and ` = 2. The lowest-order contribution to control will, therefore, involve modulation of the

photoelectron spectrum through variation of ϕ1 with periodicity of π/2, or through variation of

ϕ2 with periodicity π.

Because pathways requiring the fewest number of total photons tend to be the most probable,

we can also understand the relative sizes of the different terms that contribute to the photoelectron

spectrum in Eq. (2.7). The total four-photon pathway to A3,−1,` required for control is expected

to be considerably less likely than the total two-photon pathway to A−1,1,` with which it interferes.

Similarly, both pathways are expected to be less probable than the total one-photon pathway that

contributes to A1,0,1. As such, we expect the ϕ-dependent interference term to be much smaller

in magnitude than the phase-independent terms |A1,0,1|2, |A−1,1,0|2, and |A2
−1,1,2| — producing

only a comparatively small modulation of a larger signal as ϕ is varied.

2.2.4 CEP Effects for Single-Color Pulses

In Sec. 2.2.2, it was shown that control via the phase ϕ can only be obtained when two (or more)

pathways end at the same energy and with different values of n. In the multi-color case, these

pathways were provided by having multiple pulses with different central frequencies (see Fig. 2.1).

However, when only only a single-color pulse is present, it is not possible for two pathways to

end at the same energy if they involve the exchange of different numbers of net photons at the

central frequency. As such, in order to see control in the CEP, ϕ1, of a single-color pulse, it

is necessary for the pulse to have a large enough bandwidth to drive non-negligible transitions

involving photons at frequencies other than the central frequency, ω1.
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The bandwidth of a pulse is defined as the width of the power spectrum |Ẽ(ω′)|2, typically

measured as the full width at half maximum. Here, ω′ is used to differentiate from the central

frequency of the electric field, and the power spectrum is given by the Fourier transform

Ẽ(ω′) =
1√
2π

∫ +∞

−∞
E(t)e−iω

′tdt. (2.8)

In general, the frequency bandwidth, ∆ωFWHM, will be inversely related to the pulse length,

∆τFWHM, of the intensity envelope — as pulses become shorter, ∆ωFWHM becomes larger and

the absorption and emission of photons at frequencies other than the central frequency becomes

increasingly likely. In this scenario, diagrams like those shown in Fig. 2.1 will still give an accurate

description of pathways associated with absorption/emission at the central frequency; however,

pathways involving the exchange of photons with other frequencies within the bandwidth must

also be included. The end result is that a given ψn will have a width in energy space, as opposed

to being sharply peaked.

This broadening in energy of ψn is illustrated in Fig. 2.2 for the case of hydrogen ionization

discussed in Sec. 2.2.3, with the only change being that a single-color field is used rather than a

two-color field. For this case, the photoelectron spectrum in Eq. (2.7) will be given by

dP

dE
=
∑
`

∑
n,n′

An`A
∗
n′`e

−i(n1−n′1)ϕ, (2.9)

where An`(E) = 〈E`|ψn1〉. In order to observe CEP effects in the photoelectron spectrum,

Eq. (2.9) says that An` with different n must have amplitudes at the same energy — requiring

An`(E) to have a large enough width in energy to create overlap between pathways with different

net photon numbers. Taking dipole-selection rules into account, this overlap must occur between

pathways with a difference ∆n that is an integer multiple of two.

The expected overlap in energy between different amplitudes An` can be estimated from the

ratio ∆ωFWHM/ω of the incident laser pulse; Figure 2.2 gives a schematic illustration of how the

overlap changes as a function of this ratio. This figure is based on lowest-order perturbation

theory, where an amplitude An` is contributed to only by processes involving a total absorption

of n photons. The LOPT picture gives peaks with a profile defined by the power spectrum of the
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Figure 2.2: Schematic illustration, based on LOPT, of the magnitudes |An`(E)| in Eq. (2.9) for the photoelectron
spectrum of hydrogen. The figure shows amplitudes associated with n=1,2,3, and 4 for (a) ∆ωFWHM/ω = 1/6,
(b) ∆ωFWHM/ω = 1/2, (c) ∆ωFWHM/ω = 1/

√
3, and (d) ∆ωFWHM/ω = 1. The amplitudes are shown in arbitrary

units and on a log-scale; in accordance with LOPT, the amplitudes of subsequent peaks decrease linearly.

laser pulse, thus providing a simple way to connect changes in the width of the power spectrum

to changes in the width of the amplitudes An`. It should be noted that LOPT also predicts a

broadening of higher-order amplitudes associated with the free-free transitions that occur in ATI

— i.e., all peaks with n > 1 in Fig. 2.2. This effect, which is not shown in Fig. 2.2, can increase

CEP effects for higher-order peaks provided that the signal is still large enough at the associated

energies. A more detailed discussion of the mechanisms that contribute to this peak broadening

is provided at the end of this section.

For small values of the ratio ∆ωFWHM/ω, Fig. 2.2(a) shows that no overlap exists between

amplitudes with different values of n. In this case, observables will be unaffected by varying

the CEP of the pulse. As the ratio approaches a value of roughly 1/3, Fig. 2.2(b) shows that

amplitudes with ∆n = 1 begin to have some overlap in the region between adjacent peaks. While

amplitudes differing by ∆n = 1 cannot interfere in the photoelectron spectrum in Eq. (2.9), these

amplitudes can interfere in other observables such as the momentum distribution. As such, CEP
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effects will first be seen at roughly this ratio, and will occur at energies between peaks in the

photoelectron spectrum (where the overlap is largest).

Because nothing about Fig. 2.2 is specific to hydrogen (other than the energy of the initial

state), this rough estimate for the minimum value of ∆ωFWHM/ω at which CEP effects become

observable applies to other systems as well — assuming a Gaussian pulse, and, thus, a Gaussian

power spectrum. Effects beyond LOPT will obviously alter the width of the amplitudes An` —

as will resonances, the structure of the dipole, and the aforementioned broadening of higher-

order peaks. However, even with these deviations, our estimate is still in fairly good agreement

with experiment. For example, the first measurement of CEP effects in ionization found CEP-

dependent electron asymmetries in 800-nm, 5-femtosecond pulses; no CEP-dependence was found

in the same experiment with 8-femtosecond pulses [97]. Our estimate of ∆ωFWHM/ω = 1/3 for

the laser parameters in that experiment suggest that the cutoff for CEP effects should occur at

roughly 3.1 femtoseconds.

When the ratio ∆ωFWHM/ω approaches 1/
√

2, amplitudes differing by ∆n = 2 begin to

overlap — providing observable CEP effects in the photoelectron spectrum. As with interference

between peaks with ∆n = 1, this ratio will serve as a rough approximation for the value where

CEP effects become observable in the photoelectron or kinetic energy release (KER) spectrum

of other systems as well. From Fig. 2.2(c) and Fig. 2.2(d), we see that the maximum overlap

between peaks differing by ∆n = 2 tends to occur at the peak between An` and An+2,`, allowing

for modulation of the photoelectron peaks themselves via the CEP. This will, of course, provide

only a small modulation on top of a (relatively) large signal.

If the ratio ∆ωFWHM/ω is further increased, amplitudes associated with pathways differing by

∆n ≥ 3 will also begin to interfere. Of course, how large this ratio can become is restricted by

how short the pulse can be made. For Gaussian pulses, ∆ωFWHM/ω is determined solely by the

number of optical cycles, Ncyc, as

∆ωFWHM

ω
=

2 ln(2)

πNcyc
. (2.10)

As such, achieving ∆ωFWHM/ω = 1 — the value at which pathways with ∆n = 3 begin to
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overlap in Fig. 2.2 — already requires a sub-half-cycle pulse. We will see in Chap. 5, however,

that mechanisms not included in our simple schematic can lead to overlap between peaks with

∆n ≥ 3 without meeting this requirement on Ncyc.

Broadening of Higher-Order Amplitudes

The broadening of higher-order ATI peaks — and, consequently, the associated photon-pathway

amplitudes An` — can be understood through the following picture (see Fig. 2.3). A given

n-photon peak in the spectrum has a width due largely to the bandwidth of the laser pulse.

Starting from any of the energies in this n-photon peak, an additional photon can be absorbed,

giving rise to the (n + 1)-photon peak. This absorbed “photon” itself has a width due to the

bandwidth of the laser pulse. The (n + 1)-photon peak finally observed in the photoelectron or

KER spectrum is the sum of all transitions originating from every energy in the n-photon peak

distribution—including, in reality, interference, resonance effects, effects beyond LOPT, and any

energy dependence of the dipole matrix elements (none of which are accounted for in this simple

picture). The resultant (n+ 1)-photon peak is thus broader than the n-photon peak.

Quantifying this picture, the (n+ 1)-photon peak is a convolution of the n-photon peak with

the laser’s power spectrum. To see that the energy dependence of the (n+ 1)-photon peak can

be obtained through this convolution, we convert the sketch in Fig. 2.3 into mathematics. We

Figure 2.3: Sketch of the photoelectron spectrum, in arbitrary units, showing pathways producing the (n + 1)-
photon peak based on the heuristic explanation in the text. The absorption of an additional photon beyond the
n-photon peak originates from different energies within the peak, leading to a broadening of the (n+ 1)-photon
peak relative to the n-photon peak. Figure adapted from Ref. [7].
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denote the n-photon peak probability distribution by Pn(E) and the laser’s power spectrum as

|Ẽ(E)|2. The former peaks at En, the latter peaks at ω.

The distribution for both of the new peaks (green dashed and blue dotted lines) depicted in

Fig. 2.3 is just the laser’s power spectrum, but based on different starting energies E ′i within Pn(E)

(red solid line) and weighted by the probability for this energy, Pn(E ′i). Thus, the distribution for

each of these new peaks is Pn(E ′i)|Ẽ(E − E ′i)|2. Consequently, Pn+1(E) is approximately

Pn+1(E) ≈ Pn(E ′1)|Ẽ(E − E ′1)|2 + Pn(E ′2)|Ẽ(E − E ′2)|2 (2.11)

when just the two peaks in Fig. 2.3 are taken into account. Since all values of E ′ within Pn(E)

should be used, we take the continuum limit to obtain

Pn+1(E) =

∫
dE ′Pn(E ′)|Ẽ(E − E ′)|2. (2.12)

Thus, in this simple picture, the (n+1)-photon peak distribution is a convolution of the n-photon

peak with the laser’s power spectrum.

Applying this result iteratively using the fact that the first peak in the spectrum has width

∆ωFWHM, one can show that this picture predicts that the width of the n-photon peak for a

Gaussian laser spectrum is proportional to
√
n∆ω. Based on the empirical fact that in the ATI

photon peaks can be observed to very high orders, this simple picture likely overestimates the

growth of the width.

2.3 Dressed Potentials

2.3.1 Diabatic Dressed Potentials

Section 2.2 described how ψn can be interpreted as the state of a system that has exchanged a net

number of n photons with the field, changing the system’s total energy from E0 to E = E0+n·ω.

This approach was applied in Sec. 2.2.3, where arrows representing photon absorption/emission

were used to trace pathways from E0 to E = E0 +n ·ω, allowing us to predict interference effects

in the spectrum. An alternative, but equivalent, approach involving dressed potentials was also
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briefly mentioned in Sec. 2.2.2. In this approach, the term −n ·ω in Eq. (2.4) is associated with

the potential energy V in the unperturbed Hamiltonian H0 = T + V (with kinetic energy T ) to

define dressed, diabatic potentials UD
n = V −n ·ω. Dressed potentials can provide another useful

way to trace pathways to a given final state — especially for multi-channel problems where a

number of potentials are involved. Both the diabatic, dressed potentials discussed in this section

and the adiabatic, dressed potentials discussed in Sec. 2.3.2 have previously been used within

Floquet to explain phenomena in molecular processes in CW lasers [191–200].

Examples of diabatic dressed potentials can be seen in Fig. 2.4 for H+
2 . Here, the poten-

tials are the Born-Oppenheimer 1sσg and 2pσu potentials, dressed by odd and even numbers of

photons, respectively, to account for dipole-selection rules (assuming an initial state in the 1sσg

potential). Higher-energy Born-Oppenheimer electronic channels are ignored here for simplicity.

Figures 2.4(a) and 2.4(b) show dressed potentials for single-color fields with 800- and 400-nm

light (ω1 = 0.058 a.u. and ω1 = 0.116 a.u.). Figure 2.4(c) shows the potentials in the combined

two-color field (ω1 = 0.058 a.u. and ω2 = 0.116 a.u.).

Because the photon energy is viewed as shifting the potentials by −n·ω in the dressed diabatic

representation, the energy of the system is approximately conserved during its interaction with

the pulse. This energy is shown by the black, horizontal line in Fig. 2.4. In the CW limit, it

can be shown that the the system’s energy (referred to as the “quasi-energy” in Floquet) is

strictly conserved when using dressed potentials. For pulsed lasers, this energy conservation is

only approximate within the bandwidth of the laser — as it is possible to absorb/emit photons

not at the central frequency.

Arrows are used in Fig. 2.4 to indicate various pathways for dissociation. The likelihood of

taking a given pathway is, in large part, determined by the location of the crossing between

the system’s initial potential (here, U1sσg − 0ω1), and the potential that the pathway proceeds

along 2. The top blue arrow in Fig. 2.4(a) represents the one-photon pathway onto the U2pσu−1ω1

potential for ω1 = 0.058 a.u. It can easily be seen the crossing between the U1sσg − 0ω1 and

U2pσu − 1ω1 potentials occurs near the system’s energy — indicating a near-resonant transition.

2The relevance of curve-crossing locations to transition probabilities is most easily seen in the adiabatic picture
— see Sec. 2.3.2 for details.
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Figure 2.4: Dressed potentials for H+
2 molecular ion in an 800-nm (a), 400-nm (b), and two-color 800 + 400-nm

field (c). 1sσg potentials (U1s) are shown in black, 2pσu potentials (U2p) are shown in red. The horizontal line
represents the systems energy, and the individual arrows represent different pathways for dissociation — with blue
arrows representing pathways involving only a single color, and the red arrow representing a two-color pathway.
Vertical black lines from the dressed potentials to the system energy in (a) and (b) illustrate the expected KER
produced by the corresponding pathways to these potentials.

The expected KER for this pathway, shown in the figure by a vertical black line, is given by the

difference between the system’s energy and the asymptotic limit of the U2pσu − 1ω1 potential.

The bottom blue arrow in Fig. 2.4(a) shows the net two-photon pathway onto the U1sσg−2ω1

potential, with the KER corresponding to this pathway also illustrated in the figure. This pathway

proceeds through the absorption of 3ω1 onto the U2pσu−3ω1 potential, followed by the stimulated

emission of ω1 to end on the U1sσg − 2ω1 potential — a process involving the total exchange of

four photons. While this pathway is further from resonance than the pathway to U2pσu − 1ω1, it

is clearly still much closer to resonance than the direct pathway to the U1sσg − 2ω1 potential —

which does not cross the U1sσg−0ω1 potential at all. As such, this picture predicts an unexpected

phenomenon: for a range of intensities large enough to drive total four-photon processes, the

dominant pathway to the net two-photon KER peak in H+
2 will involve four photons rather than

two. This total four-photon pathway will be even more likely for lower-lying vibrational states,

which will have energies near the crossing between U2pσu − 3ω1 and U1sσg − 0ω1.

Figure 2.4(b) shows the one-photon pathway onto the U2pσu − 1ω1 potential for ω1 =

0.116 a.u., along with its predicted KER. This pathway is mainly included due to its impor-

tance in the two-color pathways in Fig. 2.4(c). The two-color diagram provides an illustration of

how the introduction of an additional color opens up new pathways for interference. The blue
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arrow in the two-color field represents the pathway where the system absorbs a single 800-nm

photon to move onto the U2pσu − 1ω1 − 0ω2 potential. The red arrow represents the pathway

where the system absorbs a single 400-nm photon to transition onto the U2pσu − 0ω1 − 1ω2

potential, before emitting a single 800-nm photon to end on the U1sσg + 1ω1 − 1ω2 channel. It

is clear from the figure that these pathways end with the same kinetic energy. Although these

pathways end in different electronic channels, we will see in later chapters that some observables

allow for interference between these pathways. Due to their differing values of n1 and n2, this

interference can be controlled by either ϕ1 or ϕ2.

The dressed-potentials discussed in this section do not include the coupling between different

states ψn caused by the electric field in Eq. (2.4) — as such, they are referred to as being diabatic

in time (or, equivalently, the electric field). As we will see in this next section (Sec. 2.3.2), it is also

possible to include these couplings in order to generate a new set of potentials — such potentials

are said to be adiabatic in the electric field. Both the diabatic and adiabatic representation

are exact and contain the same physics (assuming all channels and couplings are included), but

adiabatic potentials can provide additional insight into certain physical processes.

2.3.2 Adiabatic Dressed Potentials

To illustrate the difference between adiabatic and diabatic potentials, we examine simple adia-

batic dressed potentials for single-photon processes using a system with a field-free ground state

potential U1 and an excited potential U2. The two channels are coupled through the dipole

interaction by a single-color pulse, and the laser polarization is assumed to be aligned with the

system’s dipole. Equation (2.4) gives the diabatic potential matrix

V D =

(
U1 E0(t)d/2

E0(t)d/2 U2 − ω

)
, (2.13)

where the diagonal elements give the diabatic, dressed potentials UD
1 = U1 and UD

2 = U2 − ω.

The adiabatic representation is obtained by diagonalizing V D; the adiabatic potentials are given

by the resulting eigenvalues.

For a CW laser, the couplings in Eq. (2.4) will be independent of time — thus creating
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adiabatic potentials that are constant in time with non-adiabatic coupling only in R. For a pulsed

laser, the envelope in Eq. (2.4) will result in time-dependent couplings — creating adiabatic

potentials that are functions of time with non-adiabatic coupling in both R and t. At t→ −∞,

when the envelope of the pulse is zero and no coupling exists, the adiabatic and diabatic potentials

have the same shape. As the envelope becomes larger, the avoided crossing between the adiabatic

potentials grows to create a gap between the potential energy curves. This gap will follow the

envelope of the pulse, reaching its largest size when the envelope is at its peak and then decreasing

until the the adiabatic potentials return to their field-free limit. This time-dependent process is

illustrated in Fig. 2.5. In Fig. 2.5, U1 and U2 are chosen to be Morse potentials, the dipole is

given by d = R(1 + tanh (2.4−R)), and a Gaussian envelope is used. The formation of an

avoided crossing is a universal feature that does not depend on these choices.
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Figure 2.5: (a) Dressed diabatic potentials UD
1 = U1 and UD

2 = U2 − ω for our model system. (b-d) Dressed
adiabatic potentials at times when the coupling envelope is given by E0(t) = 0, E0(t) = 0.1, and E0(t) = 0.5. The
horizontal, black line marks the energy of an initial state near the E0 = 0 crossing. The figure provides a simple
illustration of how the crossing found in the diabatic potentials turns into an increasingly large avoided crossing
in the adiabatic representation as the coupling is turned on.
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At t → −∞, the system will be in a vibrational eigenstate of the field-free U1 potential.

As the pulse envelope grows and the adiabatic potentials begin to separate, the system will no

longer be in an eigenstate of the new potentials — causing wavepacket motion at a fixed mean

energy. For states with energy near the field-free crossing, such as the state labeled in Fig. 2.5

with a horizontal line, we expect the wavepacket to go over the barrier of the lowest adiabatic

potential and through the avoided crossing. It should be clear from the Fig. 2.5 that if the system

goes through the crossing, it will end in a final state associated with the potential that goes to

U2 − ω asymptotically — and, as such, will be observed in a state associated with the field-free

U2 potential after the pulse has gone to zero. For the choices in Fig. 2.5, the wavepacket is at

an energy above the breakup threshold and dissociation will occur.

For energies much lower or higher than the crossing energy (not within the gap between

adiabatic potentials), transitions will be less probable. For very low energies, the system will

likely remain bound in the first well of the UA
1 potential (R ≈ 1.7 a.u.), resulting in the system

remaining in a state associated with the field-free U1 potential as the envelope decreases back

to zero. For slightly higher energies (still below the crossing), a mixture of bound states in

the two wells will likely occur — causing bound populations in the states associated with both

field-free potentials once the envelope goes to zero. For energies much higher than the crossing,

transitions can occur via tunneling out of the UA
1 potential onto the UA

2 potential (above the

breakup threshold), but such transitions are still less likely than the resonant case for energies near

the crossing. Because the adiabatic and diabatic representations are equivalent, all information

from the adiabatic representation about the energies where transitions are most likely to occur

can be applied in the diabatic representation as well.

2.4 Closing Remarks

In this chapter we have derived a parametric formalism that allows us to express the wavefunction

for a system exactly in terms of net-photon pathways. Although the direct application of the

results in this chapter requires certain restrictions on the field and system (Sec. 2.1), the results

hold for a large number of intense, ultrashort physics experiments. Using the knowledge that
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the summation indices n in Eq. 2.3 count the net number of photons absorbed from the field,

we can identify the most likely pathways of photon absorption/emission and determine which ψn

will be most relevant in our wavefunction expansion. Dressed potentials can aid in this process,

allowing us to identify the resonant energies where transitions are likely to occur. By expressing

observables in terms of the relevant pathways, we can predict which pathways will interfere to

provide control — allowing us to make quantitative predictions about the energies where control

will occur and about the nature of the control itself.

In Chap. 3 and Chap. 6, we will focus on using knowledge of pathways derived from dressed

potentials and dipole-matrix elements to make predictions about these types of control, and carry

out calculations to show the merits of the theory. In Chap. 4 and Chap. 5, we will shift our

focus to extracting information about the laser or the pathways associated with ψn themselves

from a given spectrum. This will allow us to devise methods for better understanding pulse

characterization, and provide an understanding of what pathways are causing a given effect in

an observable even in situations where we do not have enough a priori knowledge to predict the

pathways beforehand.
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Chapter 3

Single-Color Carrier-Envelope Phase

Effects

In Chap. 2, we laid out our parametric formalism for understanding single-color and multi-color

control. In this chapter, we will apply our formalism to the (mathematically) simplest case of

carrier-envelope phase control using a single-color pulse, specifically focusing on CEP effects in

the dissociation of HeH+. Here the electric field in Eq. (2.2) becomes

E(t) = E1(t) cos (ωt+ ϕ), (3.1)

and the wavefunction in Eq. (2.3) becomes

ψ(t) =
∑
n

ψn(t)e−inϕ. (3.2)

The subscripts from Eq. (2.2) and Eq. (2.3) are altered in Eq. (3.1) and Eq. (3.2) to give n1 = n

and ϕ1 = ϕ for simplicity of notation in the single-color case. This chapter will closely follow the

previous publication of our work in Ref. [6, 7].
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3.1 Calculations for Dissociation of HeH+ in Intense, Ul-

trashort Pulses

HeH+ is the simplest heteronuclear molecule with an electronic asymmetry within the Born-

Oppenheimer approximation. Because it has only two electrons, accurate calculations for both

the structure and intense-field dynamics of HeH+ are relatively simple when compared to other

heteronuclear diatomics. As such, it is an obvious choice, from a theoretical standpoint, for a

benchmark heteronuclear system. Experimentally, HeH+ has been shown to be a viable target for

ion-beams studies. Such experiments have demonstrated the existence of metastable HeH2+ [201,

202] and measured the dissociation of HeH+ via electronic transitions in a free-electron laser [203].

Our work shows that HeH+ can also dissociate solely through permanent-dipole transitions

— producing a large enough yield for experimental observation in intense fields with wavelengths

of 2000 nm or longer [6]. The results of this work, presented in Sec. 3.2, have since been verified

in strong field experiments [204,205]. These studies demonstrated the importance of permanent-

dipole transitions in the dissociative ionization of HeH+ [204], and provided the first measurements

of the system’s dissociation to He(1s)+H+ through solely permanent-dipole transitions [205].

Because its dissociation is dominated by permanent-dipole effects in the long wavelength regime,

HeH+ provides an interesting contrast to other systems we have studied using our parametric

formalism — which were dominated by electronic transitions [103,104,132,206]. The application

of our formalism to understand CEP effects in HeH+ is presented in Sec. 3.3.

3.1.1 Schrödinger Equation in the Single-Channel Approximation

We begin by numerically solving the TDSE. The dipole in Eq. (2.1) is given for the system by

d = −
(

3 +mA +mB

2 +mA +mB

)
(r1 + r2) +

(
mA − 2mB

mA +mB

)
R. (3.3)

The definition of coordinates and masses are shown in Fig. 3.1; r1 and r2 give the electron

coordinates, while R is the vector from He2+ to H+. The resultant TDSE is given by

i
∂

∂t
ψ =

[
− 1

2µAB
∇2
R +Hel − E(t) · d

]
ψ, (3.4)
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Figure 3.1: The definition of the coordinates used in the Hamiltonian. Figure adapted from Ref. [6]

where the reduced mass µAB is
1

µAB
=

1

mA

+
1

mB

. (3.5)

In Eq. (3.4), the center-of-mass motion of the system has been separated out and Hel contains

both the electronic kinetic energy and all potential energy terms.

The electronic degrees of freedom are represented in the Born-Oppenheimer basis functions

Φα that solve

HelΦα (R;r1,r2) = Uα (R) Φα (R;r1,r2) . (3.6)

From Fig. 3.2, we see that there is a difference of at least 0.40 a.u. in energy between the ground

electronic channel X1Σ+ and the first-excited channel A1Σ+. Therefore, a minimum of eight

photons is required for electronic excitation at 800 nm, the shortest wavelength that we consider.

Moreover, we see from Fig. 3.2 that the magnitudes of the permanent dipole, 〈Φ1|d|Φ1〉, and

the X1Σ+–A1Σ+ transition dipole matrix element, 〈Φ1|d|Φ2〉, have nearly the same value for

1.0 a.u.≤ R ≤ 2.0 a.u., and that the permanent dipole is larger for R > 2.0 a.u. In the range

where the matrix elements are comparable, however, a minimum of thirteen 800-nm photons is

required for electronic excitation. Taken together, these considerations suggest that electronic

excitation will be negligible for all but very high intensities. Therefore, we will neglect electronic

excitation in our calculations and keep only the X1Σ+ state.

Because we consider a Σ state, the nuclear angles can be expanded in spherical harmonics

YJM — where J and M give the total angular momentum of the nuclei and the total angular

momentum projection along the laser’s polarization, respectively. Within this representation, the
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Figure 3.2: (a) The adiabatic potential energy curves [207] for the ground state of HeH+, X1Σ+, and the
first excited singlet state, A1Σ+. (b) Magnitude of the X1Σ+ permanent dipole, 〈Φ1|d|Φ1〉, and X1Σ+–A1Σ+

transition dipole, 〈Φ1|d|Φ2〉, from Ref. [207], along with the approximate permanent dipole used in Sec. 3.2.1.
Figure adapted from Ref. [6].

full wavefunction is given by

ψ =
1

R

∑
J,M

FJM(R, t)YJM(θ, φ)Φ(R; r1, r2), (3.7)

where Φ ≡ ΦX1Σ+ and we have included a factor of 1/R to remove first-derivative terms in R

in our final equations. In Eq. (3.7), the angles θ and φ give the polar and azimuthal angles that

describe the orientation of R relative to the laboratory frame. For this thesis, all calculations are

carried out using linearly polarized light — so channels with different M will not be coupled by

the laser. We use M = 0 states for all calculations and will drop the label M for the remainder

of this chapter.

With these considerations, substituting ψ into Eq. (3.4) and projecting out YJ0Φ gives the

coupled differential equations that we must solve:

i
∂

∂t
FJ =

[
− 1

2µAB

∂2

∂R2
+
J (J + 1)

2µABR2
+ U

]
FJ −

∑
J ′

√
4π

3
E (t)D 〈YJ0|Y10|YJ ′0〉FJ ′ , (3.8)

where D is the magnitude of the permanent dipole. In this work, we use 4He and 1H with masses

mA = 7351.67 a.u. and mB = 1836.15 a.u., respectively. This isotope choice maximizes the

magnitude of the permanent dipole [6]. Because it is truncated to only a single channel, there is

44



no electronic coupling in Eq. (3.8) from either the external field or the field-free Coriolis coupling

and non-Born-Oppenheimer effects.

For our calculations in Sec. 3.3, the Born-Oppenheimer potentials and permanent dipole from

Ref. [207] are used. The calculations in Sec. 3.2.1 will, however, use the approximate form

D = mA/(mA +mB)R — as the data from Ref. [207] was not available to us at the time when

those calculations were carried out. This form is exact asymptotically as the system dissociates

to He(1s2) + H+. This approximate permanent dipole is seen in Fig 3.2, along with the (more

accurate) dipole matrix elements from Ref. [207].

3.1.2 Numerical Methods

The remaining task is to solve Eq. (3.8). Initial states for the system are calculated by finding

the eigenfunctions χvJ and eigenvalues EvJ of Eq. (3.8) for the field-free case (E1 = 0). This is

accomplished by using the generalized finite differencing scheme from Ref. [208] and diagonalizing

the resulting tridiagonal Hamiltonian matrix for a given value of J . A non-uniform radial grid

is used, with the definition of the grid determined by the parameters of the laser pulse. For

two-cycle pulses, the grid is defined by Rmin = 0.5 a.u., Rmax = 110.0 a.u., and a grid spacing

∆R ≈ 0.002 a.u. for R ≤ 8.0 a.u. and ∆R ≈ 0.0094 a.u. for R > 8.0 a.u. For five- and ten-

cycle pulses, where we examine shorter wavelengths that produce breakup with higher energies,

the grid is defined by Rmin = 0.2 a.u., Rmax = 200.0 a.u., and a grid spacing ∆R ≈ 0.00094 a.u.

for R ≤ 10.0 a.u. and ∆R ≈ 0.0085 a.u. for R > 10.0 a.u. is used. Three-point averaging,

where each of three adjacent grid points is weighted equally, is applied 20 000 times to the grid

in order to smooth the abrupt change in grid spacing at R = 8.0 a.u.

Time propagation of a given initial state in the field is accomplished for small time steps δ by

using the short-time propagator

F (R, t+ δ) = e−iH(t+δ/2)δF (R, t) . (3.9)

In Eq. (3.9), F is the column vector whose elements are the FJ in Eq. (3.8). Similarly, H(t)

is the matrix representation of the full Hamiltonian in Eq. (3.8). The action of this short-time
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propagator is carried out by applying split-operator techniques and the Crank-Nicolson method

outlined in Ref. [209]. A time step of δ = 0.008 a.u. is used in our calculations for two-cycle

pulses, while δ = 0.03 a.u. is used for five- and ten-cycle pulses. The number of partial waves J

included in our expansion of ψ is dynamically increased [210], with additional partial waves added

when the partial wave associated with the maximum J at a given time-step passes a population

threshold (typically on the order of 10−7).

We use initial vibrational states with J = 0 for all calculations and express the electric field1

as

E = E0e
−(t/τ)2 cos(ωt+ ϕ)ẑ, (3.10)

where τ = τFWHM/
√

2 ln 2. Calculations in Sec. 3.2.1 are carried out for τFWHM corresponding

to both five- and ten-cycle pulses, using wavelengths in the 800− 2400-nm range and intensities

between 1012 W/cm2 and 1014 W/cm2. In these calculations, the CEP is set to ϕ = 0 — although

this specific choice is irrelevant because we expect minimal CEP effects for such long pulses. In

Sec. 3.3, calculations will be carried out for shorter, two-cycle pulses in order to examine CEP

effects. There, wavelengths of 3200 and 4000 nm are used, with an intensity of 1014 W/cm2. The

initial and final times used in our calculations (ti and tf ) are chosen such that ti is the time when

the intensity first reaches 107 W/cm2, and tf is the time after peak intensity when the intensity

falls off to 108 W/cm2. The initial and final times, along with all other numerical parameters

discussed in this section, were chosen to give three digits of accuracy in the KER spectrum for

all energies shown in this thesis.

1The field strength in atomic units is defined as E =

√
I/3.5× 1016 W/cm2
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3.2 Multiphoton Dissociation of HeH+

3.2.1 Dissociation Probability

To quickly determine the parameters that produce substantial dissociation, we first consider the

total dissociation probability

P = 1−
∑
vJ

∣∣〈χvJ |FJ(tf )〉
∣∣2, (3.11)

for a series of initial vibrational states. In Eq. (3.11), χvJ are the field-free, ro-vibrational eigen-

states, while FJ(tf ) are the components given by Eq. (3.8). The intensity dependence of P for

several initial vibrational states is presented in Fig. 3.3. From the figure, we see that P ∝ In for

most initial vibrational states, which is the result expected from LOPT for n-photon absorption.

Deviations from In do appear in some cases for high intensities, indicating that lowest-order

perturbation theory is no longer adequate. For an initial v = 0 state — E0,0 = −2.9715 a.u.

in a potential with U(R → ∞) = −2.9032 a.u. — two photons are required for dissociation at

800 nm and 1200 nm, three photons are required at 1600 nm and 2000 nm, and four photons are

required at 2400 nm. These values of n match the slopes found in Fig. 3.3. This same analysis
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Figure 3.3: Figure shows the total dissociation probability P as a function of intensity for different wavelengths,
pulse lengths, and initial vibrational states. The top figures are for five-cycle pulses, while the bottom figures are
for ten-cycle pulses. From left to right, the columns correspond to the initial vibrational states v = 0, 3, 6,and 9.
Note that different scales are used for the probabilities in v = 0 and 3, when compared to v = 6 and 9. Figure
adapted from Ref. [6].
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can be applied to explain the slopes seen for other initial states in the figure.

From Fig. 3.3, we see that there do exist parameters that produce substantial dissociation:

up to 8.5% (five cycles) and 16% (ten cycles) for 1013 W/cm2, and up to 48% and 65% for

1014 W/cm2, respectively. The experiment in Ref. [205] has since showed that it is possible to

detect dissociation for 1014 W/cm2 pulses with wavelengths from 800 to 2400 nm; dissociation

was only detected at 1013 W/cm2 for wavelengths longer than 3000 nm. Direct comparison with

their results is difficult because the molecules started in a distribution of initial states and they

did not use a fixed number of cycles for different wavelengths. However, they did observe the

same rough increase in dissociation probability for longer wavelengths that we see in Fig. 3.3.

In our results, the maximum P occurred for v = 6 at 2400 nm — which was true at all

intensities in both five- and ten-cycle pulses. This result is not surprising considering only one

photon is required for dissociation from this state. Dissociation from v = 9, however, also requires

only a single photon, yet its dissociation probability is an order of magnitude smaller than for

v = 6. The difference in dissociation probability for these two states is explained by the radial

part of their bound-free dipole matrix elements,

DEv =

〈
E, J = 1

∣∣∣∣ mA

mA +mB

R

∣∣∣∣χv0

〉
, (3.12)

where |E, J〉 is the the energy normalized field-free continuum state with energy E and angular

momentum J .

Figure 3.4 shows DE9 and DE6 along with the ranges of KER (denoted as E) expected for

the absorption of one photon with wavelengths between 2400 nm and 800 nm. Keeping in mind

that the vertical scale in the figure is logarithmic, it is clear that DE9 is roughly ten times smaller

than DE6 at any given wavelength — yielding, in turn, a much smaller dissociation probability.

While this argument only strictly applies to relative size of the one-photon dissociation proba-

bilities, multiphoton processes will provide smaller contributions to the total yield. Additionally,

multiphoton dissociation requires a bound-free transition prior to the free-free transitions that

produce higher-order peaks, and that bound-free transition will involve a matrix element similar

to the one in Eq. (3.12).
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Figure 3.4: Bound-free dipole matrix elements, Eq. (3.12), as a function of KER E (which is measured relative
to the threshold U(R → ∞) = −2.9032 a.u.) for v = 6 and v = 9. The range of energies expected for one
photon absorption at wavelengths between 2400 nm and 800 nm is indicated for both initial ro-vibrational states.
Figure adapted from Ref. [6]

The wavelength dependence of P , which is evident in Fig. 3.3, can also be explained by DEv.

In Fig. 3.4, we see that for v = 6 and 9 the dipole matrix elements decrease roughly exponentially

with increasing KER. In fact, this behavior is a general feature of DEv for this system. Therefore,

assuming the number of photons required is the same, longer wavelengths are expected to give

the largest dissociation probability because they produce dissociating fragments with the lowest

KER.

3.2.2 Kinetic Energy Release Spectrum and Momentum Distribution

Before moving on to studying CEP control of HeH+ dissociation, it makes sense to examine the

structure of the observables that will be controlled — specifically, the KER spectrum and the

momentum distribution. Section 3.2.1 demonstrated that both five- and ten-cycle pulses with

I = 1014 W/cm2 produce dissociation probabilities greater than 1.0% for both λ = 2000 nm and

λ = 2400 nm in all studied initial vibrational states except v = 0. The largest dissociation occurs

for intensities between 1013 W/cm2 and 1014 W/cm2 and at a wavelength of 2400 nm, therefore,

we constrain our studies of the KER and momentum distribution to this region of parameter

space.

Because there is only one electronic channel relevant for our laser conditions, the dressed

potentials from Sec. 2.3.1 and Sec. 2.3.2 are not as useful in understanding the bound-free
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Figure 3.5: Dressed diabatic potentials Un = UX1Σ+ − nω at 2400 nm for transitions involving up to the
absorption of n = 6 net photons. The dashed horizontal line inside the UX1Σ+ − 0ω potential shows the energy
of the system, given here by a v = 3 initial state.

transitions that result in HeH+ dissociation. Dressed potentials for HeH+ can be defined and

are shown in Fig. 3.5; however, potentials with n > 1 do not produce crossings within the well

of the UX1Σ+ − 0ω potential. This lack of crossings is, of course, a general feature of dressed

potentials associated with permanent-dipole transitions — such curves will always be parallel to

each other up to the centrifugal barrier. Consequently, bound-free transitions for permanent-

dipole transitions will always non-resonant. Non-resonant transitions are also possible between

the electronic channels shown in Fig. 2.4 for H+
2 , however resonant transitions will be dominant

in that case.

The dressed potentials in Fig. 3.5 do still provide some useful information. The energy of the

KER peaks can be predicted from the difference between the system’s energy and the threshold

of dressed potentials with n > 1. Additionally, the dressed potentials can give information about

resonant bound-bound transitions. We see from Fig. 3.5 that the energy of the system lies within

the well of the UX1Σ+ − 1ω potential. If the UX1Σ+ − 1ω potential has a bound state near this

energy, then a resonant transition to the bound state will occur. When such a transition occurs as

an intermediate step to dissociation, the process is referred to as resonance enhanced multiphoton
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dissociation (REMPD) — a molecular analog of the resonance enhanced multiphoton ionization

(REMPI) that is commonly observed in photoelectron spectra [20].

In addition to REMPD, it makes sense to look for other similarities between HeH+ dissociation

and atomic ionization. Adopting an atomic ionization picture to understand HeH+ is particularly

appealing when you note that Eq. (3.8) looks very similar to the coupled equation for the radial

wavefunction of an electron in a hydrogenic atom. Pursuing this atomic analogy, Eq. (3.8) —

with the approximate dipole D = mA/(mA + mB)R — shows that the “electron” in HeH+

has a charge of q = mA/ (mA +mB), a mass of µAB, and interacts via a short-range, central

potential. In atoms, multiphoton ionization occurs when the Keldysh parameter is larger than

one [149]. For the laser parameters used in this chapter, our Keldysh parameter will always lie

well above this value. Consequently, we expect to see many of the same phenomena that are

seen in multiphoton ionization in the strong-field dissociation of HeH+

In HeH+, the KER spectrum is given by

dP

dE
=
∑
J

| 〈EJ |FJ(tf )〉 |2. (3.13)

A typical result for the KER spectrum in the parameter space that we are considering is shown in

Fig. 3.6. This spectrum clearly shows the characteristic photon-spaced peaks expected for ATD,

with peaks given by En = nω + EvJ − Up — where Up = q2E2
0/4µABω

2 is the ponderomotive

energy from Sec. 2.1.1. Because Up/ω ≈ 0.040 for the parameters in Fig. 3.6 (and Fig. 3.7),

this result gives En/ω = EvJ/ω + n to good approximation — as would be predicted from the

dressed potentials in Fig. 3.5. For v = 3 and λ = 2400 nm, we expect the first peak to occur for

two photon absorption at En=2/ω = 0.26, which is in good agreement with the result in Fig. 3.6.

It is also important to note the large number of ATD peaks visible in Fig. 3.6. Our result shows

more ATD orders than is typically seen in H+
2 — a consequence of the large energy difference

between the X1Σ+ and A1Σ+ potentials, which allows for the absorption of many photons before

electronic excitation plays a role and blurs the peaks. Even so, the highest ATD peak shown in

Fig. 3.6 lies 0.19 a.u. — more than eleven photons — below the minimum of the A1Σ+ potential.

Pursuing the atomic analogy further, one might expect to see an ATD plateau like those
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Figure 3.6: The KER spectrum for an initial vibrational state of v = 3 in a five-cycle, 2400-nm pulse with
intensity 8.9 × 1013 W/cm2. The vertical dashed line at E/ω = 0.26 corresponds to the expected location of
the first peak, and the dashed diagonal, green line shows the dP/dE ∝ In behavior expected from lowest-order
perturbation theory. The red arrow shows the splitting of the n = 2 peak caused by REMPD. Figure adapted
from Ref. [6].

typically seen in ATI spectra for 2Up < E < 10Up [60]. However, the small ponderomotive

energy for our system would put this plateau in the energy range between E/ω = 0.08 and

E/ω = 0.40 — i.e., smaller than one of the peaks. Physically, this small interval is due to the

fact that the massive nuclei are unable to gain a substantial amount of energy in the field. For

a pulse with I = 8.9× 1013 W/cm2, it would require a wavelength of almost 3.7 µm to produce

a plateau region with a large enough energy range to fit two KER peaks. Further increasing

wavelength should eventually create a plateau with many peaks, like those seen in ATI. Similarly

increasing the intensity at a fixed wavelength should eventually produce a plateau; for example,

at 2400 nm an intensity of 1016 W/cm2 would be needed to produce a plateau region with an

energy range large enough to fit two peaks.

In addition to the KER, we also examine the distribution in the energy and angle associated

with the relative momentum k, which we will refer to as the “momentum” distribution for

convenience, given by

∂2P

∂E∂θk
= 2π|

∑
J

(−i)JeiδJYJ0(θk)〈EJ |Ψ(tf )〉|2. (3.14)

Here, θk is measured with respect to the laser polarization and δJ is the scattering phase shift

for state |EJ〉. Note that Eq. (3.13) is obtained from Eq. (3.14) by integrating over the angle
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θk. The momentum distribution for v = 3 and λ = 2400 nm, the same case shown in Fig. 3.6, is

shown in Fig. 3.7. We, of course, still see the photon-spaced peaks with decreasing probability.

The angular distribution of each ATD peak is consistent with the identification of the number

of photons involved. For instance, the peaks at E/ω = 0.3, 2.3, ... are nonzero at θk/π = 0.50

as expected for even-parity final states produced by the absorption of n = 2, 4, ... photons from

the J = 0 initial state. Similarly, the peaks at E/ω = 1.3, 3.3, ... have a node at θk/π = 0.50

corresponding to an odd number of photons absorbed.

In both Fig. 3.6 and Fig. 3.7, there is additional structure on the two-photon peak in the

form of a peak at E/ω = 0.50 (indicated by arrows in the figures). This peak can be explained

by noting that the v = 3 to v = 6 transition is nearly on resonance for 2400 nm: ω6,3 =

Ev=6,J=1 − Ev=3,J=0 = 1.2ω. Even though the effective intensity at the resonant frequency

ω6,3 = 1.2ω is reduced by seven orders of magnitude in the power spectrum of our pulse, the

resonant enhancement is still sufficient to produce a peak. Moreover, this REMPD mechanism

correctly predicts the peak to be at E/ω = 0.50 in agreement with our calculations.

A REMPD peak is noticeable in Fig. 3.6 on the n = 3 peak as well. For higher order peaks,

however, the REMPD peak grows increasingly broad in energy due to the bandwidth of the laser
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Figure 3.7: “Momentum” distribution from Eq. (3.14) plotted as a function of energy and angle θk for an initial
ro-vibrational state with v = 3 and J = 0 in a five-cycle pulse with an intensity of 8.9 × 1013 W/cm2 and a
wavelength of 2400 nm. The upper-axis label n indicates the net number of photons absorbed. The red arrow
shows the splitting of the n = 2 peak caused by REMPD. Figure adapted from Ref. [6].
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pulse, washing it out as a distinct peak. We expect REMPD to be ubiquitous in long wavelength

dissociation of HeH+ since these wavelengths are more likely to drive a bound-bound resonant

transition.

3.3 Parametric Formalism for HeH+ Observables

We will now extend our calculations to look at CEP effects in HeH+ dissociation. In order to

understand the results, we will apply our parametric formalism in the usual fashion. The total

wavefunction in Eq. (3.7), within the single electronic channel approximation for initial states

with M = 0, is given within our formalism by

Ψ =
1

R

∑
J,n

FnJ(R, t)YJ0(θ, φ)Φ(R; r1, r2)e−inϕ. (3.15)

We will begin our study of CEP effects by looking at the momentum distribution within our

formalism, as the other observables that we study (KER, spatial asymmetry, and dissociation

probability) can all be defined directly from this distribution. While this section deals specifically

with HeH+, we stress that all of the results derived here apply equally well to any single-channel

problem where J is a good quantum number for the field-free system. Similarly, although we

examine observables that are of interest in this specific problem, any observable can be expressed

within our formalism.

3.3.1 Momentum Distribution and Spatial Asymmetry

Using the parametric expansion of the final wavefunction in Eq. (3.15) and defining the amplitudes

AnJ by

AnJ(E) = (−i)JeiδJ 〈EJ |FnJ〉, (3.16)

the momentum distribution becomes

∂2P

∂E∂θk
=2π

∑
n,J,J ′

[
AnJA

∗
nJ ′ +

∑
n′ 6=n

AnJA
∗
n′J ′e

i(n−n′)ϕ
]
YJ0(θk)Y

∗
J ′0(θk). (3.17)
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We emphasize once more that all of the CEP dependence is explicit in the exponential factor.

Moreover, the energy dependence is entirely contained within the amplitudes AnJ ; the angular

dependence is entirely contained in in YJ0.

Because n is the net number of photons, AnJ(E) has the standard interpretation from Chap. 2

of being the amplitude associated with exchanging n net photons with the field to end in a state

with energy E and angular momentum J . We have explicitly separated interference terms in

Eq. (3.17) from those that involve pathways with the same final n — and, thus, do not interfere

in a way that can be controlled via the CEP — in order to more easily identify the pathways

that we are interested in for CEP control. We see from Eq. (3.17) that CEP effects can be

observed in the momentum distribution when there exists an energy E and angle θk where the

product AnJA
∗
n′J ′YJ0YJ ′0 is non-zero — allowing for pathways with different final J to contribute

to CEP effects in this observable. Consequently, pathways differing by odd ∆n can create CEP

effects in the momentum distribution. Because pathways with the smallest |∆n| have the largest

overlap (see Fig. 2.2), |∆n| = 1 terms will create the largest contribution to CEP effects in the

momentum distribution.

Consequently, CEP effects in the momentum distribution will be considerably larger than in

the observables discussed in Chap. 2 — which required interference between pathways with even

∆n to produce control. These CEP effects will tend to be largest in the region between adjacent

photon peaks, where pathways with |∆n| = 1 have maximum overlap, and will create oscillations

in the signal with a periodicity of 2π in the CEP. Because interfering pathways with any value

of ∆n can produce CEP control in Eq. (3.17), higher-order interferences will also contribute to

CEP effects. These interference terms will typically be much smaller than |∆n| = 1 terms, and

will create oscillations in the signal with periodicities of 2π/|∆n|.

Visualizing CEP effects in the complete momentum distribution is difficult — as it is a function

of three variables when the dependence on ϕ is included. It is common, instead, to examine

control over a spatial asymmetry — defined as the difference between the integrated momentum

distribution in two angular ranges. Using a difference, as opposed to looking at a single angular

range, has the advantage of eliminating the CEP-independent portion of the signal — as will be

demonstrated below. For HeH+, defining the angular ranges as 0 to π/2 and π/2 to π provides a
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measure of the control over the energy-dependent probability of the H+ ion traveling up or down

(relative to the laser polarization).

Here, we define this spatial asymmetry using a slightly different normalization convention than

is standard in experiment as:

A(E) =

[
Pup(E)− Pdown(E)

]〈
dP

dE

〉−1

ϕ

, (3.18)

where

Pup =

∫ π/2

0

∂2P

∂E∂θk
sin θkdθk (3.19)

and

Pdown =

∫ π

π/2

∂2P

∂E∂θk
sin θkdθk. (3.20)

We note that in using the CEP-averaged KER in the denominator of Eq. (3.18) we have deviated

from standard practice of normalizing by the CEP-dependent KER in Eq. (3.23), which is obviously

equivalent to Pup + Pdown. The downside of this choice is that A no longer strictly lies between

−1 and 1. However, we gain simplicity in interpretation since any CEP dependence in A can now

only come from the numerator — as the KER is, in general, dependent upon the CEP.

It can be shown that the numerator in Eq. (3.18) reduces to

Pup − Pdown =

√
π

2

∑
nJ even
n′J ′ odd

CJJ ′AnJA
∗
n′J ′e

i(n−n′)ϕ. (3.21)

The constant CJJ ′ resulting from the angular integration can be written in terms of Clebsch-

Gordan coefficients as

CJJ ′=
J+J ′∑

L=|J−J ′|

√
(2J+1)(2J ′+1)〈JJ ′00|L0〉

Γ(2−L
2

)Γ(3+L
2

)
. (3.22)

The spatial asymmetry thus extracts the terms in the momentum distribution that are antisym-

metric with respect to θk = π/2 — namely, those with J and J ′ of opposite parity. The symmetric

piece is completely eliminated by the subtraction in Eq. (3.21). This provides a contrast with the

KER spectrum discussed in Chap. 2 (and derived for this system in Sec. 3.3.2), where only the
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the symmetric piece of the momentum distribution survives integration. This result holds true

even if the integration limits in Eq. (3.19) and Eq. (3.20) are defined only over an angular range

less than π/2 — as long as the cuts are symmetric about π/2. This is significant as it is common

for experiments to use only a small range of angles near the polarization vector.

Because we begin in an initial state with definite parity, the fact that only terms with J and

J ′ having different parity contribute to Pup−Pdown means that n and n′ must also have different

parity to contribute2. As a result, A has no CEP-independent terms and oscillates about A = 0

with terms having periodicities 2π, 2π/3, 2π/5, and so on in the CEP. It is expected that the 2π

periodicity will dominate for most systems because it results from interference between pathways

with |∆n| = 1, which have a larger overlap than |∆n| = 3, 5... pathways. Because photon

pathways differing by only a single photon dominate A, we expect to see larger CEP effects for A

than for the KER discussed in Sec. 3.3.2 or total dissociation probability discussed in Sec. 3.3.3.

3.3.2 Kinetic Energy Release

We may calculate the KER spectrum from the momentum distribution by integrating over all

angles θk to give:
dP

dE
=
∑
n,J

[
|AnJ |2 +

∑
n′ 6=n

n−n′ even

AnJA
∗
n′Je

i(n−n′)ϕ
]
. (3.23)

Equation (3.23) is equivalent to the single-color case of the hydrogen photoelectron spectrum in

Eq. (2.7) — as expected based on the previously mentioned similarities between the Hamiltonians

of the two systems. Unlike Eq. (3.17), Eq. (3.23) only allows for interference of final states with

the same angular momentum. Therefore, CEP effects can only occur in the KER spectrum when

dissociation pathways |∆n| = 2, 4... overlap in energy. As such, the dominant CEP-dependence

in the KER spectrum will be a linear combination of cos 2ϕ and sin 2ϕ, and the CEP effects found

in the KER spectrum can generally be expected to be smaller than those found in the momentum

distribution.

Moreover, we know from Fig. 2.2 that the CEP effects from the n + 1 peak interfering with

2Here, parity refers to whether n is an even or odd number — as opposed to the spatial parity associated with
the value of J .

57



the n − 1 peak will generally lie at energies overlapping the n-photon peak — creating a small

CEP-dependent variation on a large signal. To quantify the CEP effects in the energy spectrum,

we use the normalized yield Y ,

Y(E) =
dP

dE

〈
dP

dE

〉−1

ϕ

, (3.24)

where 〈dP/dE〉ϕ is the CEP-averaged spectrum. Given our analysis above, Y(E) can thus be

parameterized as

Y = 1 + Y2 cos(2ϕ+ β2) + Y4 cos(4ϕ+ β4) + . . . (3.25)

Note that all of the Yn and βn are energy dependent and that the Yn give the relative magnitudes

of the CEP effects caused by the interference of pathways differing by n.

3.3.3 Total Dissociation Probability

Finally, we obtain the total dissociation probability by integrating the KER spectrum over all

energies,

P =

∫
dP

dE
dE. (3.26)

Like the KER spectrum, the total dissociation probability only allows for interference of final states

with the same angular momentum and |∆n| even. Therefore, the total dissociation probability

will have smaller CEP effects than the momentum distribution. Moreover, we expect that the

CEP control over the total dissociation probability will also be smaller than that of the KER

spectrum since the differing energy dependence of βn from Eq. (3.25) will lead to cancellations

in the integral over energy.

3.4 Carrier-Envelope Phase Effects — Results and Discus-

sion

Calculations of the CEP-dependence of observables in HeH+ are carried out using the methods

outlined in Sec. 3.1.1 and Sec. 3.1.2 for thirty, uniformly spaced values of the CEP over a range

from ϕ = 0 to ϕ = 2π. All calculations that follow will use an initial state with J = 0, and

will be carried out for two-cycle pulses with intensities of 1014 W/cm2 and wavelengths of either
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3200 or 4000 nm. By fixing the number of cycles for the two wavelengths, we keep the value

of ∆ωFWHM/ω constant — therefore, any change in CEP effects will be caused by factors other

than the trivial bandwidth broadening outlined in Sec. 2.2.4. While it would be possible to solve

for the states FnJ using Eq. (3.15) to derive a system of equations similar to those in Eq. (3.8),

we will solve directly for FJ and use the quantities FnJ merely for their interpretive power — as

is our typical approach.

3.4.1 Spatial Asymmetry

We begin by examining the spatial asymmetry from, Eq. (3.18), which is shown in Fig. 3.8 for v =

0 and v = 1 in a 4000-nm pulse. Here, we show results for 4000-nm light because the calculated

asymmetry shows considerably larger CEP effects than at 3200 nm. Figure 3.8 shows energy-

dependent peaks with 2π periodicity, as predicted by Eq. (3.21) for the interference of pathways

with |∆n| = 1. Comparing the spatial asymmetries to their corresponding CEP-averaged KER

— shown in in Fig. 3.8(a) and Fig. 3.8(c) — we see that the largest CEP effects occur between

adjacent KER peaks. This is, of course, the expected result for |∆n| = 1 interference.

As will be seen in Sec. 3.4.2 and Sec. 3.4.3, the CEP dependence of the spatial asymmetry

is much more apparent than that of the KER spectrum or total dissociation probability. This is

Figure 3.8: (a) and (c): CEP-averaged KER spectrum, 〈dP/dE〉ϕ, in atomic units for (b) and (d), respectively.
(b) and (d): Normalized spatial asymmetry A as a function of CEP and KER in a 4000-nm pulse. Panels (a)
and (b) are for v = 0; and (c) and (d), for v = 1. Per the discussion in the text, the areas of largest spatial
asymmetry generally occur between KER peaks, where the overlap between adjacent photon pathways is largest.
Figure adapted from Ref. [7].
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expected, as both of those observables require interference between pathways with |∆n| = 2. We

also note that CEP effects in Fig. 3.8 are larger for v = 1 than for v = 0. The larger asymmetry

for the v = 1 initial state can be explained by a broadening of the KER peaks (and associated

AnJ) caused by REMPD. This peak broadening is also the likely reason that CEP effects are

largest in our calculations at 4000 nm. We further discuss peak broadening from REMPD in

Sec. 3.4.2, where the effect is easily seen in the KER.

The large spatial asymmetry that we see for HeH+ is particularly interesting considering that

CEP control over the spatial asymmetry of molecular dissociation is routinely equated with con-

trol over electron localization. Since the dynamics are governed by just the ground-state channel

X 1Σ+ that dissociates to He(1s2)+H+, however, the electrons always localize on the He atom

during dissociation, independent of the CEP. Therefore, the CEP-dependent spatial asymmetry

seen here has nothing to do with electron localization. Instead, the CEP-controlled spatial asym-

metry is actually control over the rotational degrees of freedom of the nuclei. Extension of our

formalism to other multi-channel systems — where electron localization on different nuclear cen-

ters is possible — shows that control over spatial asymmetry in dissociating nuclear fragments

can be understood as control over nuclear degrees of freedom in those cases as well. This can be

seen in Sec. 6.1.3, where we express the spatial asymmetry for D+
2 in our parametric formalism.

Of course, control over electron localization via the CEP does occur for multi-channel problems

with distinguishable final states; this effect can be measured via a channel asymmetry between

channels. For HeH+, this asymmetry (as a function of E and θk) between the lowest two electronic

channels can be defined as the difference between the two momentum distributions

∂2PX1Σ+

∂E∂θk
=2π

∑
n,J,J ′

[
A

(X1Σ+)
nJ A

∗(X1Σ+)
nJ ′ +

∑
n′ 6=n

A
(X1Σ+)
nJ A

∗(X1Σ+)
n′J ′ ei(n−n

′)ϕ
]
YJ0(θk)Y

∗
J ′0(θk), (3.27)

and

∂2PA1Σ+

∂E∂θk
=2π

∑
n,J,J ′

[
A

(A1Σ+)
nJ A

∗(A1Σ+)
nJ ′ +

∑
n′ 6=n

A
(A1Σ+)
nJ A

∗(A1Σ+)
n′J ′ ei(n−n

′)ϕ
]
YJ0(θk)Y

∗
J ′0(θk). (3.28)

Here, the additional index i in A
(i)
nJ denotes that the pathway ends in electronic channel i —
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with the amplitude otherwise having its usual interpretation. The amplitudes will, however, have

a slightly different definition because the continuum state used in the projection will itself be a

multi-channel wave function. With the exception of the electronic label, Eq. (3.27) and Eq. (3.28)

are identical to the single-channel momentum distribution in Eq. (3.17). As can be seen from

Eq. (3.27) and Eq. (3.28), varying the CEP will alter the size of the signal in each channel,

providing control over whether the electrons localize to form He(1s2)+H+ or He+(1s)+H(1s).

Control over channel asymmetries will be discussed further for HD+ in Sec. 6.1.5.

3.4.2 Kinetic energy release spectrum

The KER spectrum as a function of CEP is shown in Figs. 3.9(b) and 3.9(d) for a wavelength of

4000 nm and initial states with v = 0 and v = 1, respectively. For a fixed CEP, we clearly see the

characteristic photon-spaced peaks of ATD in the KER spectrum; similar peaks were observed

in Fig. 3.6 for a 2400-nm pulse. From Fig. 3.9(b) and Fig. 3.9(d), we see that CEP effects in

the KER are much smaller than in the spatial asymmetry. The amplitude Y2 from Eq. (3.25)

provides a measure of the size of these CEP effects (to leading order) and is shown in Fig. 3.9(a)

and Fig. 3.9(c).

From Fig. 3.9(a), we see that Y2 does not exceed three percent — except for regions where

it is trivially enhanced by small signals. The small size of Y2 for v = 0 is reflected in the lack of

Figure 3.9: (a) and (c): The relative amplitude Y2 of the CEP-dependent oscillation defined in Eq. (3.25) for
(b) and (d), respectively. (b) and (d): KER spectrum dP/dE as a function of CEP in a 4000-nm pulse. Panels
(a) and (b) are for v = 0; and (c) and (d), for v = 1. Figure adapted from Ref. [7].
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any visible changes in Fig. 3.9(b) as a function of CEP. As with the spatial asymmetry, we see

larger CEP effects in the v = 1 case; Y2 is nearly 10% at energies with substantial signal, and

CEP effects are visible in Fig. 3.9(d). For both vibrational states, CEP effects were found to be

smaller when 3200-nm light was used.

These results imply that going from 3200 nm to 4000 nm, or from v = 0 to v = 1 at 4000 nm,

creates a larger overlap between photon pathways. However, because the number of cycles is

fixed for all calculations, mechanisms other than the bandwidth must be responsible for this

increased overlap between peaks. As previously mentioned, we believe that this broadening of the

KER peaks can be explained by REMPD — a phenomenon we identified at shorter wavelengths

in Sec. 3.2.2. This conclusion is based on the telltale splitting of the first three KER peaks in

Fig. 3.9(d), an effect that can be seen even more clearly in Fig. 3.10.

Comparison of the spectra in Fig. 3.10 at a given wavelength shows that this peak splitting

is much larger for v = 0 than v = 1. Most of the individual photon peaks in the v = 1 case have

very little structure; the magnitude of each photon peak decreases as a function of energy in a

fairly monotonic fashion as you move away from its maximum value. The individual photon peaks

for v = 0, in contrast, exhibit a clear revival at a second energy near their expected maximum

(En = nω+EvJ). We attribute this revival to a nearly-resonant intermediate transition between

bound states separated by energy ∆E — which creates an enhancement of the n-photon peak

at the slightly shifted energy En = nω + EvJ + (∆E − ω). The result of this REMPD is that

Figure 3.10: KER spectra, dP/dE, in atomic units for ϕ = π cuts of Figs. 3.9(b) and 3.9(d) along with the
equivalent spectra for 3200 nm. Figure adapted from Ref. [7].
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the individual photon peaks become broader in energy — which can be easily seen by comparing

the width of the v = 0 and v = 1 peaks in Fig. 3.10.

From Fig. 3.10, we see that this peak broadening from REMPD occurs for v = 1 in both

wavelengths. However, the effect is more pronounced in 4000 nm — where the individual peaks

are wide enough that no pronounced minimum exists between adjacent peaks at low energies.

Based on the size (in energy) of the peak splitting, we believe that the nearly resonant transition

in the 4000-nm case occurs between the v = 1 initial state and the v = 2, J = 1 state. Of

course, this increased overlap between adjacent photon peaks in the KER spectrum corresponds

to an increased overlap between the associated amplitudes AnJ . This explains that larger CEP

effects in the 4000-nm, v = 1 case.

3.4.3 Total dissociation probability

The final observable of interest is the total dissociation probability. Our calculations confirm

the π periodicity in P expected from Eq. (3.26) that arises from the |∆n|=2 interference (see

Fig. 3.11). We also find that the CEP effects are larger for 4000 nm than for 3200 nm, which

is convenient for potential experiments in the sense that the 4000-nm pulse produces the larger

total dissociation probability. However, these effects are still small and in no case did we find

a modulation of P greater than 1% of the CEP-averaged probability 〈P 〉ϕ. We again find the

largest effects for v = 1 in a 4000-nm pulse, caused by broadening of peaks from REMPD.
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Figure 3.11: CEP-dependence of the dissociation probability (normalized by the CEP-averaged dissociation
probability) for HeH+ from v = 0 and v = 1 initial states, in 3200- and 4000-nm light.
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3.5 Closing Remarks

In this chapter, we have proposed HeH+ as a simple, heteronuclear benchmark for studying lCEP

control. We have shown that long-wavelength dissociation of HeH+ is dominated by permanent-

dipole transitions and demonstrated that an experimentally detectable dissociation yield can

be produced in this wavelength regime. Experiments directly measuring this permanent-dipole

dissociation have since been achieved [204,205]. Additionally, we have shown that control over the

spatial asymmetry can be obtained at experimentally observable magnitudes for long wavelengths

(3200 nm or longer) and at intensities approaching 1014 W/cm2. Using our parametric formalism,

we have provided a simple picture that provides a quantitative understanding of the control

observed. In the next chapter, we will continue our exploration of CEP effects, but will turn our

attention to using our parametric formalism to learn about the CEP of the pulse itself — rather

than the observables being controlled through the phase’s variation.
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Chapter 4

Parametric Asymmetry Plots Within Our

Parametric Formalism

In Chap. 3, we showed how carrier-envelope phase effects can be understood for single-color pulses

within our parametric formalism. Specifically, we focused on using our theory to explain the CEP

control seen in the dissociation of HeH+; while our theory was applied to numerical calculations,

it can, of course, be applied in the same manner to understand experimental spectra. However,

in order to generate experimental, CEP-dependent spectra like as those seen in Figs. 3.9, 3.11,

and 3.8, the CEP for each shot of the laser must be known.

In this chapter, we will continue our exploration of single-color, CEP effects. Here, we will

transition from understanding physical observables for known CEPs to extracting the phase itself

from the spatial asymmetry of a photoionization spectrum. In Sec. 4.1, we will briefly outline

relevant experimental techniques for characterizing the carrier-envelope phase of a pulse. In the

sections that follow, we will show how our parametric theory can be applied to understand from

first principles how this method of CEP extraction works, and — potentially — how our theory

can be used to improve the shot-to-shot characterization of the CEP.
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PL(E)

PR(E)

Figure 4.1: Diagram of CEPM. Adapted with permission from Ref. [214].

4.1 Experimental Methods of Carrier-Envelope Phase Ex-

traction

There are two main approaches for determining the CEP in experiment: locking the CEP to a

given, known value in order to obtain a spectrum and then repeating for a number of different

phases; or, allowing the CEP to vary randomly between shots and explicitly measuring it for each

individual shot. The first of these methods can be achieved using optical techniques — such as

f -2f interferometry [211]. However, even a pulse with a “locked” CEP will have shot-to-shot

variations, especially at the long run-times required to accumulate sufficient counts. For example,

shot-to-shot variation in the CEP from f -2f interferometric techniques were found to produce

uncertainties of around 300 mrad for run-times on the order of hours in previous studies [212,213].

In f -2f techniques the goal is to limit shot-to-shot variations, keeping the CEP as close to

a locked value as possible. In contrast, the second of the aforementioned techniques uses shot-

to-shot variation as an advantage — allowing the CEP to randomly vary in order to scan the

2π range of possible phases. Here, the CEP is measured for each individual shot, typically by a

CEP-meter (CEPM) that makes use of stereo ATI [214–216]. For each shot, a portion of the

linearly-polarized beam is split off and sent to the CEPM; the remaining portion of the beam is

used for the intended experiment.

The CEPM itself is comprised of two electron detectors centered on the laser’s polarization

axis, with a xenon gas cell centered between the two detectors (Fig. 4.1). The intensity of the

split-off portion of the beam is adjusted to put the interaction with xenon predominately in the
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single-ionization regime. For each shot, the energy of the ionized electrons are measured on one

of the two detectors — producing left and right photoelectron spectra, PL(E) and PR(E).

The two measured spectra are then integrated over two energy ranges within the plateau region

of the ATI spectrum — a higher energy range, ∆EH , and a lower energy range, ∆EL [63, 216].

The normalized difference between the two integrated spectra (evaluated in both energy ranges)

produces two spatial asymmetries for each shot — AH and AL. The two asymmetries are then

plotted as a parametric asymmetry plot (PAP) of AL versus AH for each shot (Fig. 4.2).

By carefully controlling experimental conditions and optimizing the selection of high and low

energy ranges, it has been found experimentally that it is often possible to create a PAP that

approximately takes the shape of a circle [215, 216]. Mathematically, the condition for a circular

PAP is that bothAL andAH oscillate sinusoidally in the CEP, ninety degrees out of phase and with

the same amplitude. We have already shown in Sec. 3.3.1 that when only pathways with ∆n = 1

interfere, the spatial asymmetries will be exactly sinusoidal in the CEP with energy-dependent

phases. However, this was independently observed in experiment during the development of the

methods outlined in this section — opening the possibility of choosing energy ranges to generate

a circular PAP [216].

A circular PAP is desirable because the CEP can be related to the polar angle θ of the PAP
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Figure 4.2: (a) Photoelectron spectra PL/R(E) measured by the left and right detectors, respectively, with high
and low energy ranges defined. Adapted with permission from Ref. [214]. (b) Parametric asymmetry plot (PAP)
for asymmetries AH/L produced by taking the normalized difference of PL/R(E) as defined by Eq. (4.4), and
then integrating over the energy ranges ∆EH/L. Adapted with permission from Ref. [216].
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by

tan θ =
AL
AH

= tan (ϕ+ ϕ0), (4.1)

which gives the linear relationship ϕ = θ−ϕ0 [214,215]. The absolute phase cannot be retrieved

solely through use of a CEPM, and its value depends on the definition of the carrier wave of the

pulse. Some work has been done to characterize the absolute phase through a combination of

theory and CEPMs [217–219]; this work will be further discussed in Sec. 4.2.

Generating a circular PAP is not possible for all pulses and is far from the most general case.

When the PAP is not circular, other methods must be used to retrieve the CEP for each shot.

Most commonly, the CEP is extracted using the fact that the physics of the pulse generation leads

to the CEP having a random, uniformly distributed value from shot to shot. In the infinite-shot

limit, the same number of shots will occur in any infinitesimal range dϕ of the CEP. This implies

a connection between the infinitesimal range dθ of the polar angle and dϕ given by

dϕ =
ρ(θ)

〈ρ〉
dθ, (4.2)

where ρ is the density of shots as a function of the polar angle and 〈ρ〉 is the average number of

shots in the range dϕ [215]. Equation (4.2) can be applied to any shape of PAP, with its accuracy

determined by the number of shots and bin size. However, it is still ideal to generate a PAP that

is as close to circular as possible in order to minimize the error in the extracted CEP [215, 216].

4.2 Application of the Parametric Formalism

While the experimental methods used to extract the CEP from a PAP are simple to apply and

commonly used, there has been little work aimed at providing a theoretical underpinning of

the PAP itself. Some theoretical work related to PAPs does exist; for example, previous work

compared numerical solutions of the TDSE in a single-active electron potential to experimental

results in an attempt to improve CEP extraction [217]. Here, it was found that theory could aid in

determining the absolute CEP, something that experiment alone is not capable of doing. Similar

studies have compared calculations based on SFA and quantitative rescattering theory (QRS) to
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experimental results to determine the absolute phase [218, 219]. The latter of these methods is

not only much faster than solving the TDSE, but provides an interpretation of the CEP effects

in terms of the CEP-dependent changes in the wavepacket that rescatters from the parent ion to

create high-energy ATI.

Although methods based on QRS and SFA have shown promise, they are based on approxima-

tions that neglect certain physical processes. Additionally, these methods — and solutions of the

TDSE — require numerical solutions at each CEP rather than providing an analytic expressions

for left/right photoelectron spectra. With our parametric formalism, we are able to generate an

analytic expression for the expected behavior of AH and AL as a function of CEP from first

principles. Our theoretical framework additionally provides insight into the physical mechanisms

that determine the shape of a PAP, what processes cause deviations from a circular PAP, and

how these deviations can be reduced or eliminated completely. Thus, our formalism allows for

the possibility of improving the extraction of the CEP from a PAP.

We begin by expressing the momentum distribution for the electrons detected in the CEPM

within our parametric formalism. In the single-active electron approximation, the TDSE for the

system is identical in form to that of Eq. (3.8) for HeH+ — with the potential and masses

changing, along with changes in notation to r and ` to represent the electronic coordinate

and angular momentum. Because of these similarities, we can forego the derivations and use

Eq. (3.17), which for the ionized electron is given by

∂2P

∂E∂θk
= 2π

∑
n,`,`′

[
An`A

∗
n`′ +

∑
n′ 6=n

An`A
∗
n′`′e

i(n−n′)ϕ
]
Y`Y

∗
`′ . (4.3)

In Eq. (4.3), linearly polarized light is used to match experimental conditions — as such, states

with different values of m are not coupled.

For a xenon sample, ionized electrons will likely come from ` = 1 orbitals — with m = 0 and

m = ±1 all contributing to the ionization spectrum. Electrons from each initial m will have a

momentum distribution — all of which have the form of Eq. (4.3). As such, it should be noted

that the amplitudes An` and the spherical harmonics depend on m. A more general result could

be derived by averaging the momentum distribution for each of these m to better match the
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experimental conditions. However, the specific m-value will not affect any of the results derived

in this chapter and we will use m = 0 to demonstrate how our formalism applies to PAPs.

From the momentum distribution in Eq. (4.3), we can arrive at the relevant quantities AL

and AH needed for the PAP. Following the definition used in experiment [216], these asymmetries

are given by:

AH/L =

∫
∆EH/L

(PL − PR) dE∫
∆EH/L

(PL + PR) dE
. (4.4)

Here, the energy-dependent probabilities, PL and PR, are defined by:

PL(E) =

∫ β

0

∂2P

∂E∂θk
sin θkdθk

PR(E) =

∫ π

π−β

∂2P

∂E∂θk
sin θkdθk. (4.5)

In Eq. (4.5), the acceptance angle β of both detectors is assumed to be the same. Similarly,

both detectors are assumed to be exactly centered on the laser’s polarization axis. The azimuthal

integration has already been carried out in Eq. (4.3).

Carrying out the relevant integrations, the numerator and denominator of AH/L are given by∫
∆EH/L

(PL − PR) dE =

∫
∆EH/L

(∫ β

0

∂2P

∂E∂θk
sin θkdθk −

∫ π

π−β

∂2P

∂E∂θk
sin θkdθk

)
dE

=
odd∑
n>n′

B̃
H/L
nn′ cos [(n− n′)ϕ]− C̃H/L

nn′ sin [(n− n′)ϕ], (4.6)

and ∫
∆EH/L

(PL + PR) dE =

∫
∆EH/L

(∫ β

0

∂2P

∂E∂θk
sin θkdθk +

∫ π

π−β

∂2P

∂E∂θk
sin θkdθk

)
dE

=
even∑
n≥n′

B̃
H/L
nn′ cos [(n− n′)ϕ] + C̃

H/L
nn′ sin [(n− n′)ϕ]. (4.7)

The summations in Eq. (4.6) and Eq. (4.7) differ only in that fact that the former is carried out

over odd values of n−n′, while the latter is carried out over even values. These restrictions come

from the angular integration and are the same as those discussed for the spatial asymmetry in

Sec. 3.3.1; only odd `− `′ survive the difference in the numerator, while only even `− `′ survive
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the sum in the denominator. The restrictions on net photon numbers are, of course, equivalent

because we are in the dipole approximation and begin in an eigenstate of angular momentum.

The coefficients B̃nn′ and C̃nn′ in Eq. (4.6) and Eq. (4.7) are given by the expressions

B̃
H/L
nn′ = 2π (4− 2δnn′)

∫
∆EH/L

∣∣∣∣∣∑
`,`′

An`A
∗
n′`′

∫ β

0

Y`Y`′ sin θkdθk

∣∣∣∣∣ cosαnn′dE, (4.8)

and

C̃
H/L
nn′ = 8π

∫
∆EH/L

∣∣∣∣∣∑
`,`′

An`A
∗
n′`′

∫ β

0

Y`Y`′ sin θkdθk

∣∣∣∣∣ sinαnn′dE. (4.9)

While omitted for simplicity, it is understood that the summations over ` and `′ within the

coefficients B̃
H/L
nn′ and C̃

H/L
nn′ have the same parity restrictions as n and n′. Here, the coefficients

in PL − PR only include terms with ` and `′ having different parity, while the coefficients in

PL+PR only include terms with ` and `′ having the same parity. For all of the above expressions,

the phase α is given by the argument

αn,n′ 6=n=Arg

[∑
`,`′

An,`A
∗
n′.`′

∫ β

0

Y`Y`′ sin θkdθk

]
,

αn,n = 0. (4.10)

Finally, we simplify the notation by defining the quantities

B
H/L
∆n =

∑
n

B̃
H/L
n+∆n,n, (4.11)

and

C
H/L
∆n =

∑
n

C̃
H/L
n+∆n,n, (4.12)

where ∆n = n − n′ gives the difference in the net number of photons between interfering

pathways. This gives the desired asymmetries as the the ratio of discrete Fourier series with even

and odd frequencies:

AH/L =

∑odd
∆n>0B

H/L
∆n cos(∆nϕ)− CH/L

∆n sin(∆nϕ)∑even
∆n≥0B

H/L
∆n cos(∆nϕ) + C

H/L
∆n sin(∆nϕ)

. (4.13)
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The numerator of Eq. (4.13) sums the interference between all pathways that end at the same

energy and differ by an odd number of net photons in the given energy range (∆EH/L). Similarly,

the denominator sums all of the interfering pathways that differ by an even number of net photons

in this energy range.

Before ending this section, there are a few properties of Eq. (4.13) worth mentioning. First,

the cancellation of even and odd ∆n in the numerator and denominator, respectively, hinges

upon both detectors being centered on the polarization axis of the laser. If the detectors are

misaligned, terms with even ∆n will contribute to the numerator, while terms with odd ∆n

will contribute to the denominator. Second, this cancellation results in AH/L having half-wave

symmetry1. Consequently, the asymmetries can be re-written as a single Fourier series containing

only odd harmonics to give

AH/L =
odd∑
k

b
H/L
k cos (kϕ)− cH/Lk sin (kϕ). (4.14)

While pathways differing by ∆n = 2 (or higher-order even terms) will contribute to Eq. (4.13)

through their presence in the denominator, no even frequencies will be seen in the observed signal

— as shown by Eq. (4.14). Similarly, if we had chosen to use a non-normalized asymmetry

in Eq. (4.4), or normalized by a CEP-averaged quantity, terms involving even ∆n would not

contribute to the CEP-dependence of the spectrum at all.

4.2.1 Effect of Photon Pathways on the Shape of the PAP

By lowering the intensity of the pulse sent into the CEPM — thus, decreasing the magnitude of

higher-order pathways An` — it is possible to enter a regime where all higher-order interferences

become negligible and only ∆n = 1 terms contribute in Eq. (4.13). Because the width of ATI

peaks tends to grow with energy in a LOPT picture (Sec. 2.2.4), our formalism suggests that

interference between pathways with ∆n ≥ 2 can potentially be further reduced by choosing

energy ranges ∆EH/L at lower energies (that still exhibit clear CEP effects). Of course, our

peak-broadening picture neglects higher-order effects and resonances, and, as such, only weakly

1A periodic function x(t) with period T is said to have half-wave symmetry if x(t+ T/2) = −x(t).
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applies in the plateau region of the spectrum.

When ∆n ≥ 2 is negligible, Eq. (4.13) can be written as

AH/L =

√√√√(BH/L
1

B
H/L
0

)2

+

(
C
H/L
1

B
H/L
0

)2

sin(ϕ+ ϕ
H/L
1 ), (4.15)

where

ϕ
H/L
1 = tan−1(B

H/L
1 /C

H/L
1 ). (4.16)

This lowest-order result clearly predicts a circular PAP when the magnitudes of the two asym-

metries are equal and ϕH1 and ϕL1 are ninety degrees out of phase. It also provides a theoretical

framework for understanding why it is often possible to create circular PAP in experiment: for

the majority of cases, lowest-order effects will dominate the signal and oscillations with higher

frequencies will be negligible or contribute only small perturbations to the sinusoidal behavior.

In its most general case, Eq. (4.15) is the parametric equation for an ellipse. The polar angle

of the PAP and the CEP are related here by the transcendental equation

tan θ =

√(
BL1
BL0

)2

+
(
CL1
BL0

)2

√(
BH1
BH0

)2

+
(
CH1
BH0

)2

(
sin (ϕ+ ϕL0 )

sin (ϕ+ ϕL0 ) cos γ + cos (ϕ+ ϕL0 ) sin γ

)
, (4.17)

where γ = ϕH0 − ϕL0 is the phase difference between the two integrated asymmetries. The

magnitudes of the two asymmetries appear in Eq. (4.17) and can be roughly estimated from the

maximum values seen in an experimental PAP. However, arbitrary values of γ cannot be easily

inferred from the PAP. The values γ = π/2 and γ = π are exceptions to this rule, as they create

distinct shapes — an ellipse with semi-major and semi-minor axes of AH/L or a line, respectively

As such, Eq. (4.17) is rarely useful in practice.

In the experimental methods outlined in Sec. 4.1, the ranges of integration ∆EH and ∆EL

are adjusted to produce integrated asymmetries with γ = π/2. As just mentioned, this phase

difference creates a distinct shape for the PAP — making it easy to identify in experiment. In
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Figure 4.3: Parametric asymmetry plots from Eq. (4.14) showing the emergence of non-elliptical behavior as
higher-order terms become relevant. Equation (4.14) is used to avoid ∆n = 0 and ∆n = 2 terms, thus reducing
the number of parameters needed. (a) PAP when only ∆n = 1 pathways interfere and Eq. (4.14) and Eq. (4.13)
are equivalent; coefficients given by bL1 = 0.38, cL1 = 0.30, bH1 = −0.40, and cH1 = 0.50. (b) PAP with the same
first-order coefficients and bL3 = 0.05, cL3 = 0.04, bH3 = −0.03, and cH3 = 0.04.

this case, Eq. (4.17) reduces to

ϕ+ ϕL0 = tan−1


√(

BH1
BH0

)2

+
(
CH1
BH0

)2

√(
BL1
BL0

)2

+
(
CL1
BL0

)2
tan θ

 . (4.18)

Care must be taken in solving Eq. (4.18) for ϕ, as the inverse tangent function will only return

values of ϕ between −π/2 and π/2. This can be addressed by keeping the returned value of ϕ

at θ = 0 and then shifting each subsequent ϕ by the appropriate integer multiple of π to ensure

that ϕ increases monotonically as a function of θ. Because CEPMs only give ϕ up to a constant,

the values of ϕ can be shifted to set ϕ = 0 at θ = 0, thus putting all returned values of ϕ in the

desired range of 0 to 2π2.

For higher intensity pulses, interference between pathways differing by ∆n = 2 or more

photons becomes unavoidable. In this case, Eq. (4.15) no longer applies and the PAP will begin

to deviate from an ellipse. As shown in Fig. 4.3, as the interference between photon-pathways

with ∆n ≥ 2 becomes relevant, the PAP begins to develop corners and take on the so-called

“phase-potato” shape that is commonly seen in experiment [215, 216]. Parametric asymmetry

2The problem of phase-jumps can also be addressed using the two-argument arctangent function.
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plots generated from Eq. (4.14) show that this “potato-shaped” deviation from circular behavior

can be seen even when the higher-order coefficients are an order of magnitude smaller than those

for ∆n = 1 pathways.

4.3 Extracting the CEP from General Parametric Asym-

metry Plots

When higher-order photon pathways become relevant, tan θ = AL/AH still holds and — using

Eq. (4.13) — provides the relationship between θ and the CEP. However, there is no simple

method for using the resulting expression to obtain ϕ from the polar angle when higher-order

contributions become relevant; neither an analytic expression, like that for the circular PAP, nor

a simple transcendental equation, like that for an elliptical PAP, exists in this regime. Moreover,

attempting to directly fit the ratio of asymmetries in Eq. (4.13) or Eq. (4.14) to tan θ has issues

of non-uniqueness; regardless of the number of shots there will be more unknown parameters

than data points. For N shots, including frequencies up to kmax in Eq. (4.14) gives 2(kmax + 1)

unknown parameters b
H/L
k and c

H/L
k and N unknown ϕ — with only N known values of θ.

An alternative method for extracting the CEP from a given PAP is try to improve upon the

existing experimental method embodied in Eq. (4.2). To do this, we follow the method outlined

in Ref. [215] to obtain the CEP from a non-circular PAP. In this method, the shots are binned

in θ and the average value of both integrated asymmetries is calculated in each bin. The total

number of shots, combined with the number of shots in each θ-bin, allows for the calculation of

both ρ(θ) and 〈ρ〉 in Eq. (4.2). This equation is then used to map each θ-bin to a corresponding

ϕ-bin.

The standard method used for determining the CEP stops at this point. We propose taking the

additional step of carrying out the sine and cosine Fourier transforms of this data in ϕ to obtain

the coefficients b
H/L
k and c

H/L
k in Eq. (4.14). Once these coefficients are obtained, Eq. (4.14)

can be used to find the CEP for each individual shot — not just the average CEP for the bins

— by finding the CEP that solves
Adata
L

Adata
H

=
AL(ϕ)

AH(ϕ)
. (4.19)
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In Eq. (4.19), AH/L(ϕ) are the analytic expressions in Eq. (4.14) and Adata
H/L are the experimentally

determined integrated asymmetries for the shot in question. Simple root-finding techniques can

be used to solve Eq. (4.19) for ϕ.

Because the asymmetries in Eq. (4.13) have the property AH/L(ϕ± π) = −AH/L(ϕ), ϕ and

ϕ±π will provide equally good solutions to Eq. (4.19). This is, of course, similar to the problem

we encountered for Eq. (4.17). We address the problem of phase-jumps using the technique

discussed in Sec. 4.2.1. It is worth noting that this property of the spatial asymmetries gives rise

to a PAP with the same property in θ, AH/L(θ ± π) = −AH/L(θ). This mirror symmetry in

the PAP will be broken if the detectors are not properly aligned, or if the CEP is not uniformly

distributed in 0 to 2π.

4.3.1 Numerical Details

To test our proposed method, we will extract the CEPs from simulated experimental data. The

error found in experimental measurements of spatial asymmetries is dominated by statistical errors

due to electron counting and by shot-to-shot variations in the pulses [215]. These errors will, of

course, create a distribution about our analytic expression in Eq. (4.13) for a given θ. While the

uncertainties δAH/L are not typically reported in the literature for the individual shots used to

generate a PAP, we can infer the errors from previous experimental work.

The uncertainties δAH/L can be related to the width δr of the PAP at a given θ. Using stan-

dard error propagation and the Cauchy–Schwarz inequality, an upper bound for this relationship

is given by

δr2 =

∣∣∣∣∣ AH√
A2
H +A2

L

∣∣∣∣∣ δA2
H +

∣∣∣∣∣ AL√
A2
H +A2

L

∣∣∣∣∣ δA2
L. (4.20)

Equation (4.20) holds when the errors in two asymmetries are correlated, which is the expected

case. Noting that the fractions in Eq. (4.20) are always less than or equal to one, and approx-

imating the two uncertainties to be equal, this gives a reasonable approximation for the errors

as

δAH/L =
δr√

2
. (4.21)

In contrast to δAH/L, single-shot uncertainties in δr have been reported as a function of pulse
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length in Ref. [220], where they were found to be on average δr = 0.1 — with no value larger

than δr = 0.125 reported. Similarly, the width δr can be approximated by visually examining a

PAP. Based on reported values of δr, and the examination of several PAPs in the literature, we

use δAH/L = 0.1 (corresponding to δr ≈ 0.14) as the maximum uncertainty in our calculations.

We believe that this should provide a reasonable upper bound for the errors.

For our tests, each shot was assigned a randomly generated carrier-envelope phase for a uni-

form distribution within the range 0 < ϕ < 2π. Calculations are carried out for 200 000, 100 000,

and 50 000 shots. While the number of shots used in experiments varies greatly, sometimes as

low as 4500 [214], this range matches the majority of experiments we found. Asymmetries are

then calculated from Eq. (4.14) with terms up to k = 5 included. The coefficients from the PAP

in Fig. 4.3 are used, with b
H/L
5 = 0.1b

H/L
3 and c

H/L
5 = 0.1c

H/L
3 .

For each shot, errors are added to the resulting value of AH/L by sampling a normal distri-

bution with standard deviation δAH/L. As with the number of shots, we carry out calculations

for multiple standard deviations to test our method for data that mimics varying experimental

conditions. The standard deviations used are δAH/L = 0.1, 0.07, and 0.05. To apply Eq. (4.2),

we use 180 bins in θ with a uniform width of two degrees (approximately 0.035 radians) —

mimicking the the 200 000-shot experiment in Ref. [215].

4.3.2 Results and Discussion

Figure 4.4 shows the PAP calculated using 200 000 shots for two different uncertainties δAH/L.

The PAPs in Fig. 4.4 look similar to those found in experiment — both in terms of the radial

width and shape. The retrieved single-shot mapping between θ and ϕ found using our method

is also shown for each PAP in Fig. 4.4. Here, the plot is made for a range of θ = 0 to θ = π —

taking advantage of the previously described symmetry in the PAP. Visual inspection shows that

our method provides a good fit for the relationship between the polar angle and CEP.

By construction, we know the actual CEP ϕi for each shot; therefore, we can calculate an

absolute error for each extracted CEP. In order to compare the errors using our method and

Eq. (4.2), we calculate the respective RMS errors δϕTh and δϕEx for the extracted phases. These

77



−1.0 −0.5 0.0 0.5 1.0
H

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

L

(a)
δH/L = 0.1

0

5

10

15

20

25

Po
in

ts
 p

er
 p

ix
el

−1.0 −0.5 0.0 0.5 1.0
H

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00


L

(b)
δH/L = 0.05

0

5

10

15

20

25

30

35

40

Po
in

ts
 p

er
 p

ix
el

0.0 0.2 0.4 0.6 0.8 1.0
θ/π

0.0

0.2

0.4

0.6

0.8

1.0

1.2

φ/
π

(c)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Po
in

ts
 p

er
 p

ix
el

0.0 0.2 0.4 0.6 0.8 1.0
θ/π

0.0

0.2

0.4

0.6

0.8

1.0

1.2

φ/
π

(d)

0

5

10

15

20

25

30

Po
in

ts
 p

er
 p

ix
el

Figure 4.4: PAP generated with 200 000 shots from Eq. (4.14) with (a) δAH/L = 0.1 and (b) δAH/L = 0.05.
(c) and (d) Mapping from the geometric angle θ to the CEP ϕ for the PAPs in (a) and (b), respectively. For the
density plots, the known value ϕi of each shot was used in Eq. (4.14) to find the asymmetries. Error was added
to these asymmetries, and their ratio was used to find the polar angle θi for each shot. The white line following
the center of the distribution shows the retrieved phase ϕTh from our method at each θi.

errors are given by

δϕEx/Th =
1√
N

√√√√ N∑
i

(
ϕi − ϕEx/Th

i

)2

, (4.22)

where ϕ
Ex/Th
i gives the CEP extracted for each shot using the two methods and N is the total

number of shots. For the PAPs in Fig. 4.4, these values are found to be δϕEx = 229 mrad

and δϕTh = 228 mrad for δAH/L = 0.1; and δϕEx = 103 mrad and δϕTh = 101 mrad for

δAH/L = 0.05. These values are quite similar to those found in the literature — with values

ranging from 113 mrad to 350 mrad being reported [214–216]. This further validates our estimates

for δAH/L. The CEP extraction using our method for the PAPs shown in Fig. 4.4 provides an

improvement of one to two milliradians.

If our method for generating the PAPs in Fig. 4.4 is repeated — using the same number of

shots and δAH/L — the values of the RMS errors δϕEx/Th we find will vary across the individual
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trials. This is, of course, true in repeated trials of an actual experiment as well. The resulting

distribution created by the individual δϕEx/Th will have both an average value 〈δϕEx/Th〉 and

a standard deviation σEx/Th. This standard deviation addresses the question of how well the

estimated errors δϕEx/Th can be expected to agree if an identical experiment is carried out multiple

times.

The averaged errors and standard deviations for NT trials are shown in Table 4.1 for multiple

values of δAH/L and numbers of shots N . The number of trials ran for a given set of parameters

was chosen such that 〈δϕEx/Th〉 was converged to 0.1 mrad. Table 4.1 shows that there is almost

no difference between the standard deviations found using the two different methods. This is not

particularly surprising, as the variance is expected to be mainly tied to the number of shots and

the size of the errors δAH/L. This relationship is seen in Table 4.1, where σEx/Th decreases for

larger N and smaller δAH/L. We note that for the 200 000-shot case with δAH/L = 0.1 (seen in

Fig. 4.4), σEx/Th is 103.2 mrad — nearly 38% of the averaged error. This value shows that even

for high shot numbers, reported errors can have a large variance if δr is large.

Also of interest is the product N × NT between the number of shots and the number of

trials required for convergence. We see that for a given error δAH/L, this product is roughly

the same across the number of shots. For example, at δAH/L = 0.1 this product is given by

7 400 000, 7 800 000, and 7 900 000 (for N = 200 000, N = 100 000, and N = 50 000,

respectively). Because you can imagine combining the trials for a given N , this suggests that a

single experiment for this δAH/L would need nearly eight million shots to retrieve the CEP with

an accuracy of 0.1 mrad.

Examining the averaged errors, Table 4.1 shows that our method provides a modest improve-

N = 200 000 N = 100 000 N = 50 000

δAH/L 〈δϕEx〉 〈δϕTh〉 σEx σTh NT 〈δϕEx〉 〈δϕTh〉 σEx σTh NT 〈δϕEx〉 〈δϕTh〉 σEx σTh NT

0.1 265.3 264.7 103.2 103.2 37 312.6 311.7 107.5 107.5 78 337.8 316.7 117.3 117.2 158
0.07 207.1 205.9 31.2 31.3 10 240.1 238.7 33.6 33.4 18 265.1 263.4 38.6 38.6 38
0.05 140.2 138.6 19.3 19.2 7 151.4 149.3 21.3 21.3 13 163.4 160.8 25.1 25.1 27

Table 4.1: Averaged errors and standard deviations (reported in milliradians) in the extracted CEP across NT

trials. The number NT was chosen to provide 0.1 mrad convergence in the averaged errors for each δAH/L and
N shown.

.
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ment over the commonly used experimental method in all cases studied. Moreover, the data

suggests that the improvement offered by our method increases for experiments with smaller

numbers of shots, or for PAPs with a smaller radial spread δr. It is worth noting that in each of

the individual trials ran to create the averaged quantities shown in Table 4.1, our method was

slightly better than the purely experimental method. However, it is also worth noting that across

all trials, our method never produced an improvement greater than 12 mrad.

Before ending this section, it is worth mentioning an additional benefit of our method. The

Fourier coefficients found in our method can also be used to determine how close an experi-

mental PAP is to the lowest-order regime — i.e., it provides a metric for determining the size

of interfering pathways with ∆n ≥ 2. This information could be used as a diagnostic that al-

lows experimentalists to decrease the intensity of the incident pulse, or adjust the energy ranges

used for integration, to a point where interference from higher-order pathways becomes negli-

gible. Reducing the intensity and adjusting the energy ranges to enter this lowest-order regime

has the benefit that the error in experimental CEP extraction is decreased for PAPs that are

circular/elliptical [214, 216].

4.4 Closing Remarks

In this chapter, we extended the application of our parametric formalism to provide insight into

the characterization of the CEP of an experimental pulse. Using our theory, we have shown

that the integrated asymmetries plotted in a PAP can be understood as being created by the

interference of different photon pathways that end at the same energy. Moreover, we have shown

that the ideal case of a circular PAP — where extraction of the CEP is provided up to a constant

by the polar angle — can only be achieved when interference between pathways with ∆n ≥ 2 is

negligible. Our theory provides insight into what changes can be made in experiment to enter this

low-order regime, and provides a method for mapping the polar angle θ to the CEP within this

regime (even when the PAP is elliptical, rather than circular). Additionally, we have proposed a

method for calculating the Fourier coefficients for higher-order pathways, providing a quantitative

metric for determining how well an experimental PAP fits into the lowest-order regime.
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Finally, in experiments where it is not possible to neglect higher-order terms, we proposed

method for improving CEP characterization that provides an actual shot-to-shot measurement

of the CEP — as opposed to an average CEP for a bin containing multiple shots. While the

improvements offered by our method were modest, it did outperform the commonly used exper-

imental method in every trial we ran. In the next chapter, we will extend this idea of using our

parametric formalism to extract information from measured observables. Chapter 5 will focus on

directly extracting the amplitudes associated with exchanging n net-photons with the field from

a given momentum distribution — allowing for the possibility of seeing exactly which physical

processes contribute to a given feature observed in experiment.
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Chapter 5

Extraction of Photon-Pathway

Amplitudes

In Chap. 4, we began examining the possibility of using our parametric formalism to directly

extract physical information from a measured or calculated spectrum — specifically, extracting

the CEP of a single-color pulse from a stereo ATI spectrum. In this chapter we will further this

idea, focusing on the extraction of photon-pathway amplitudes AnJ(E) directly from a CEP-

dependent momentum distribution. This can be considered the inverse of the work done in

Chap. 3, where knowledge of the system allowed us to make predictions about which AnJ would

be most relevant at a given energy and deduce the control over a specific observable. Here,

instead, we will take a given CEP-dependent spectrum and infer which photon-pathways must

have interfered to create the features seen at a given energy. In other words, this extraction will

allow us to gain valuable information about the specific physical processes that occurred to create

the observed spectrum.

We will begin by briefly describing how the AnJ can be calculated from a known wavefunc-

tion. This method has been employed previously by our group in Ref. [221] and will provide the

comparison for testing the accuracy of the extracted amplitudes. The remainder of the chapter

will focus on developing and testing a method for extracting pathways from a momentum distri-

bution. Such a method of extracting amplitudes is clearly advantageous, as it can be applied to

experimentally measured spectra where the wavefunction is, of course, unknown — opening up

the possibility of studying systems that are too complex to be treated accurately in calculations.
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5.1 Extracting Photon-Pathways from the Wavefunction

For systems where numerical solutions of the TDSE can be found, calculation of photon-pathway

amplitudes from single-color, CEP-dependent calculations is straightforward. For the field in

Eq. (3.1), the inverse transform based on Eq. (3.2) gives the Fourier coefficients ψn as

ψn(t) =
1

2π

∫ 2π

0

ψ(ϕ; t)einϕdϕ, (5.1)

where the TDSE solution ψ(ϕ; t) depends parametrically on the CEP. The amplitude associated

with an n-photon pathway to a given final state |EJα〉 is then determined from

AαnJ(E) = 〈EJα|ψn〉. (5.2)

Here, |EJα〉 is the continuum state with energy E, angular momentum J , and any additional

quantum numbers α necessary to uniquely identify the state.

Equation (5.2) allows for the simple extraction of photon pathways from a known wavefunc-

tion; this methodology has previously been used by our group to calculate An` for ionization of

atomic hydrogen and dissociation of H+
2 in Ref. [221]. Of course, the overall phase of the wave-

function is arbitrary, as it has no consequence on observables. Therefore, only relative phases

between AnJ have physical meaning.

Unfortunately, calculating amplitudes using this method limits us to systems where the TDSE

can be solved. One of the highlights of our formalism is that it applies equally well to any system

exposed to a laser pulse that can be described by Eq. (2.2). The number of systems that can

be — or have been — studied in such fields far exceeds the number of systems for which the

TDSE can be accurately solved. Development of a method that allows for the extraction of the

quantities AαnJ directly from a spectrum, as opposed to a wavefunction, would greatly expand the

number of systems accessible to photon-pathway analysis. To this end, our goal for the remainder

of this chapter is to develop a method for extracting AαnJ directly from a momentum distribution.
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5.2 Extracting Photon-Pathways from a Momentum Dis-

tribution

5.2.1 Theory

We will use the momentum distribution as a function of the CEP for our test cases, but other

observables could also be used. Using the momentum distribution enables the extraction of J-

dependent amplitudes at a given energy. Angle-integrated quantities, such as Eq. (3.23), only

allow for the retrieval of more limited information — for example, the sums
∑

J AnJ . While the

exact form of the momentum distribution will depend on the system being studied, single-channel

systems will have the form of Eq. (3.17):

∂2P

∂E∂θk
=
∑
n,J,J ′

[
AnJA

∗
nJ ′ +

∑
n′ 6=n

AnJ(E)A∗n′J ′(E)ei(n−n
′)ϕ
]
YJ(θk)Y

∗
J ′(θk), (5.3)

Equation (5.3) can be extended to multi-channel systems undergoing two-body breakup — pro-

vided that the relevant channels produce distinguishable final products (see Sec. 6.1.5). With

small adjustments, it can also apply to mutli-channel systems with indistinguishable final products,

as shown for D+
2 in Sec. 6.1.4.

In this chapter, we will limit ourselves to the types of systems described by Eq. (5.3). In order

to extract AnJ , we first find the Fourier components cm(E, θk) of the spectrum at each energy

and angle:

cm(E, θk) =
1

2π

∫ 2π

0

∂2P

∂E∂θk
e−imϕdϕ. (5.4)

These coefficients can be expressed in our parametric formalism as

cm(E, θk) =
∑
nJJ ′

An,J(E)A∗n−m,J ′(E)YJ(θk)YJ ′(θk). (5.5)
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In terms of the magnitudes |AnJ | and phases βnJ for each amplitude, Eq. (5.5) gives:

Re [cm]−
∑
nJJ ′

|An,J | |An−m,J ′ | cos (βn,J − βn−m,J)YJYJ ′ = 0,

Im [cm]−
∑
nJJ ′

|An,J | |An−m,J ′ | sin (βn,J − βn−m,J)YJYJ ′ = 0. (5.6)

Finding the solutions AnJ of Eq. (5.6) for the cm with m ≥ 0 is sufficient since the momentum

distribution is real.

5.2.2 Methods

Equation (5.7) provides a set of q = N(2mmax +1) equations for AnJ at each energy, with N the

number of angles for which the cm are known and mmax the largest m such that |cmmax |2 is above a

suitable cutoff. Experimental measurements introduce errors in the momentum distribution that

cause deviations of the measured Fourier coefficients from Eq. (5.5). Therefore, exact solutions

of Eq. (5.7) cannot be found and we frame the task of solving for AnJ as a non-linear least

squares problem.

The problem of extracting the amplitudes is solved by finding the AnJ that minimize the

square of the residual vector R, defined at each energy by:

R1 = Re [c0(ϑ1)]−
∑
nJJ ′

|AnJ | |AnJ ′| cos (βnJ − βnJ ′)YJ0(ϑ1)YJ ′0(ϑ1)

R2 = Re [c1(ϑ1)]−
∑
nJJ ′

|AnJ | |An−1,J ′| cos (βnJ − βn−1,J ′)YJ0(ϑ1)YJ ′0(ϑ1)

R3 = Im [c1(ϑ1)]−
∑
nJJ ′

|AnJ | |An−1,J ′ | sin (βnJ − βn−1,J ′)YJ0(ϑ1)YJ ′0(ϑ1)

...
...

...

Rq = Re [cmmax(ϑN)]−
∑
nJJ ′

|AnJ | |An−mmax,J ′ | cos (βnJ − βn−mmax,J ′)YJ0(ϑN)YJ ′0(ϑN). (5.7)

In Eq. (5.7), ϑi denotes the individual angles θk. The number of terms AnJ included in the fit is

inferred from physics, much of which uses LOPT as a starting point. The largest of the |AnJ | at

a given energy can be estimated from energy conservation with the minimum number of photons

for the process. For example, A5J will typically have the largest magnitude of any pathway at
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energies near the peak associated with net five-photon absorption.

The range of nearby n that also contribute at this energy can be estimated from the values of

cm, which only include interference from terms differing by m photons. If in the net five-photon

example cmmax = 2, then only amplitudes with 3 ≤ n ≤ 7 are interfering in the spectrum. The

number of J included can inferred through similar means. For high intensities, the maximum

|AnJ | at a given energy might deviate from our prediction — which is based on LOPT. However,

as long as the number of nearby n included in the fit is large enough, no issues will arise1. All of

these choices are, of course, convergence parameters.

Because the fit is independent at each energy, there are two ways one might proceed. All

of the AnJ that are expected to contribute over the entire energy-dependent spectrum can be

identified, and this same set of AnJ can be used for the fit at every energy. Alternatively, the AnJ

expected to contribute at each individual energy can be identified, with the amplitudes included

in the fit adjusted at different energies. Because each AnJ will only be non-zero for a subset of

the energies in the spectrum, the latter of these methods has the clear advantage of decreasing

the dimensionality of our solution vector A at each energy. However, the former method has

advantages as well — which will be discussed at the end of this section.

Once choices are made for the minimum/maximum values of n and J to include at a given

energy, a solution vector A containing all |AnJ | and βnJ is constructed. When dipole selection

rules are not accounted for, or parity-unfavored transitions are possible, the dimensionality of A

will be given by p = 2(nmax−nmin + 1)(Jmax− Jmin + 1). Of course, the dimensions of A will be

reduced if the system begins in a state with well-defined parity and dipole-selection rules require

J → J + 1 for the absorption of a photon. For the fits we do in Sec. 5.3, p = 64; for the fit

in Sec. 5.4, p = 124. To avoid overfitting, it is necessary for R to have a larger dimensionality

than A (q > p). In the scenario with the smallest possible q, where only pathways with ∆n = 1

interfere and, thus, mmax = 1, this condition would require N = 22 and N = 44 angular points

for our two values of p — within the confines of what can be resolved in experiment. We used

N = 200 for all of our calculations, giving values of 1800 ≤ q ≤ 2600.

With the composition of A chosen, the resulting minimization problem is solved using a

1A different issue results from including too many n in the fit, as discussed in Sec. 5.2.3

86



modified Levenberg-Marquardt method [222]. We found it to outperform two other methods

we tested (Powell’s hybrid method [222] and the Nelder-Mead method [223]) for the problems

in Sec. 5.3. Because R2 has many local minima as a function of AnJ , the vast majority of

initial guesses for our problems found local minima rather than the desired global minimum. To

overcome this issue, a large number of initial guesses spanning the p-dimensional solution space

are used. The values of R2 for each returned solution are then compared to identify the global

minimum.

The initial guesses for βnJ are sampled from a uniform distribution defined from 0 to 2π.

Initial guesses for |AnJ | are sampled from a log-uniform distribution defined by the maximum and

minimum values that we expect any of the magnitudes to have. The largest expected value used

in our log-uniform distribution, |Amax|, can be crudely estimated by assuming only a single AnJ

contributes to the momentum distribution. In this case, Eq. (5.5) would give the magnitude of

the maximum (and only) amplitude as

|Amax| ≡

√∫ π

0

c0(E, θk) sin (θk) dθk. (5.8)

Because multiple pathways contribute, Eq. (5.8) will always provide an overestimate of |Amax|.

We were able to find the global minimum in all of our tests by using this estimate, along with a

minimum magnitude set as |Amin| = 10−6|Amax|. Both of these values can be easily adjusted if

necessary.

For the problems discussed in Sec. 5.3 and Sec. 5.4, the local minima never gave a value

smaller than R2 = 0.1; the global minima never gave a value larger than R2 = 10−11. The latter

can be decreased further by changing the tolerance of the fit. Therefore, global minima were easily

identified for our problems. The number of initial guesses required to find the global minimum

at least once at a given energy was typically 200 for Sec. 5.3, and 1000 for the larger problem

in Sec. 5.4. The average runtimes for a single initial guess at a given energy were approximately

1 minute and 5 minutes, in the respective sections. Therefore, total runtimes (in CPU hours) to

find a global minimum at a single energy were roughly 3.5 hours and 83 hours. However, this

number is drastically reduced by running initial guesses in parallel across multiple threads — since
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the calculation for each initial guess is entirely independent. Running across 56 cores (Intel Xeon

Gold 6132 processors), these single-energy calculations took roughly 16 minutes or 7 hours for

the respective sections.

For the runtimes above, we used the method of determining all relevant AnJ in the entire

spectrum and using the same A at all energies. This method drastically increases the runtime

when sampling the solution space at a single energy, as it produces a higher-dimensional space

that includes amplitudes that are approximately zero. However, because AnJ varies smoothly in

energy, the solution found using this method at one energy can be used without modification

as the initial guess for the neighboring energies. This approach eliminates the need to generate

an ensemble of initial guesses for all energies other than one, and provides a solution that is

very close to the global minimum of its neighbors. Consequently, fits at subsequent energies had

runtimes on the order of seconds — meaning the runtime for the entire energy range was nearly

the same as the numbers reported above.

5.2.3 Uniqueness of Solutions

As is typical in multidimensional non-linear least squares problems [224], non-unique global minima

can exist in Eq. (5.7). With the obvious exception of the absolute phases βnJ , we only encountered

one general type of non-unique solution in our calculations. There may exist other forms of non-

unique solutions, but we have seen no evidence of them. In this section, we will address this type

of non-unique global minima, along with methods for overcoming it.

The non-unique solutions we found come from including more AnJ than are necessary in the

fit at a given energy, resulting in some of the AnJ included being effectively zero. This problem

is particularly common when the elements of A are determined from the entire spectrum — as

this choice for A will inherently include more amplitudes than necessary at every energy. Given

the quadratic form of the residual vector in Eq. (5.7), swapping zero and non-zero amplitudes

AnJ can leave R unchanged. As such, certain permutations AnJ ↔ An′,J involving amplitudes

that are zero can produce two solutions that provide equally good fits.

As a simple example, consider a momentum distribution with four peaks measured for a

system that ionizes through absorption of a single photon. Pathways with 1 ≤ n ≤ 4 are clearly
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present in the spectrum and should be included in the fit. Assume that at the first peak, A3J

and A4J are negligible. Under the permutations A1J ↔ A3,J and A2J ↔ A4,J , Eq. (5.5) gives:

c0 −
∑
JJ ′

[
A1,JA

∗
1,J ′ + A2,JA

∗
2,J ′ + A3,JA

∗
3,J ′ + A4,JA

∗
4,J ′

]
YJ0YJ ′0 →

c0 −
∑
JJ ′

[
A3,JA

∗
3,J ′ + A4,JA

∗
4,J ′ + A1,JA

∗
1,J ′ + A2,JA

∗
2,J ′

]
YJ0YJ ′0

c1 −
∑
JJ ′

[
A2,JA

∗
1,J ′ + A3,JA

∗
2,J ′ + A4,JA

∗
3,J ′

]
YJ0YJ ′0 →

c1 −
∑
JJ ′

[
A4,JA

∗
3,J ′ + A1,JA

∗
4,J ′ + A2,JA

∗
1,J ′

]
YJ0YJ ′0

c2 −
∑
JJ ′

[
A3,JA

∗
1,J ′ + A4,JA

∗
2,J ′

]
YJ0YJ ′0 →

c2 −
∑
JJ ′

[
A1,JA

∗
3,J ′ + A2,JA

∗
4,J ′

]
YJ0YJ ′0

c3 −
∑
JJ ′

[
A4,JA

∗
1,J ′

]
YJ0YJ ′0 →

c3 −
∑
JJ ′

[
A2,JA

∗
3,J ′

]
YJ0YJ ′0. (5.9)

Equation (5.9) clearly shows that only the c0 term is generally invariant under this transfor-

mation. However, when A3J and A4J are zero, all cm are invariant under the transformation.

As a result, when fitting in an energy range near the one-photon peak, the target solution with

A3J = 0 and A4J = 0 will provide an equally good fit as the transformed solution with A1J = 0

and A2J = 0. The problem of finding equally good fits for two solutions involving permutations of

the elements of A is quite general when zeroes are involved, and was observed in all of our tests.

The exact form of the permutations that leave the residual invariant will depend on the number

of amplitudes in the fit — both non-zero and approximately zero. For example, in Sec. 5.3.1 we

will encounter cyclic permutations of the form AnJ → An+2,J in our fits.

One possible solution to this problem is partitioning the energy ranges and using a smaller,

more appropriate, set of amplitudes in each range. Physical intuition can then be used to remove

the |AnJ | that are expected to be the smallest, along with the corresponding βnJ . This process

is repeated until no zeroes are present in the fit. Alternatively, the same intuition can be used to

infer which amplitudes should be largest and undo the permutations manually — as it is typical
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to (qualitatively) know the relative size of amplitudes with different n at a given energy. For

example, in the above problem, if a solution is returned with |A1J | = 0 at the one-photon energy,

it is clear that a permutation has occurred. This approach typically only needs to be applied once

if using the same A for all energies — as the amplitudes are smoothly varying2. We use this

approach for our calculations in Sec. 5.3 and Sec. 5.4.

5.3 Photon-Pathway Extraction for a Test Case

5.3.1 Extraction at a Single Energy

As a first test for our method, we will follow a similar scheme to the one used for CEP extraction

in Chap. 4. We will choose amplitudes AnJ , construct a momentum distribution from them using

Eq. (5.3), and then apply our method to extract the amplitudes at a single energy — comparing

the results to the input AnJ to check for accuracy. We will first test our method at a single

energy to demonstrate the second class of non-unique solutions discussed in the previous section

— and outline how we deal with the issue — before moving on to the more general problem of

amplitudes that are functions of energy.

The amplitudes |AnJ | and phases βnJ chosen for this test are shown in Table 5.1. We chose

these values specifically to have more amplitudes in the fit than is necessary at a given energy. The

choices loosely model a system that undergoes breakup through absorption of a single photon,

and produces a momentum distribution with seven total peaks. The fitting is done at the energy

associated with two-photon absorption, where |A2J | have the largest amplitudes. The phases βnJ

are chosen randomly from a uniform distribution on 0 to 2π.

The momentum distribution at this energy is constructed from Eq. (5.3) using sixty values of

ϕ and N = 200 points in θk — uniformly distributed from 0 to 2π and 0 to π, respectively. The

value of mmax was seven by construction, as no pathways with ∆n > 7 were included; numerically

an mmax of five was able to provide equivalent convergence. The minimization is carried out using

2It is also possible to combine these two approaches: solutions can be found in a partitioned region using
a more appropriately sized A, and this A can be transferred across the partition boundary to the next region
(with the appropriate padding or trimming of elements). While slightly more involved, this could be beneficial for
complicated problems where many amplitudes are needed.
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A defined by nmin = 0, nmax = 7, Jmin = 0, and Jmax = 7. The estimate provided by Eq. (5.8)

gives |Amax| = 400 and |Amin| = 10−6|Amax|. Ten thousand initial guesses were used, and ran

in parallel across 56 cores. Of the initial guesses, 57 returned a global minimum — with only 6

giving the target result that is free of permutations. The returned global minima had values of R2

ranging from R2 = 10−15 to 10−12; no noticeable pattern distinguished the target and transformed

solutions based on their values of R2. The example shown in Table 5.1 had R2 = 10−12.

It is easily seen from Table 5.1 that the returned solution at the two-photon peak features

the cyclic permutations AnJ → An+2,J . Even without knowing the actual amplitudes, this can

be easily deduced from A4J being larger than A2J — despite the former being two photons away,

while the latter is expected to be the largest amplitude. Similarly, it is clearly incorrect that A1J is

approximately zero despite being only one photon away, while A7J and A6J are both considerably

larger. The corrected values obtained by undoing these permutations are also shown in Table 5.1.

All retrieved amplitudes with n ≤ 5 have |AnJ |2 that are converged to six digits. This level

of convergence is likely unnecessary for any application, especially if extracting from experiment.

The performance of our fit can be improved using less strict criteria. The small amplitudes n = 6

and n = 7 are, of course, not converged to this level. However, we have convergence of all |AnJ |

that are within five orders of magnitude of the largest amplitude — corresponding to ten orders

of magnitude in |AnJ |2. The relative phases found are also shown in Table 5.1, for n ≤ 5 they are

converged to three digits. As with |AnJ |, we do not attempt to converge the phases for n = 6

and 7 since they are small. As a general for this chapter, we will only attempt to converge |AnJ |

that are within five orders of magnitude of the largest magnitude at a given energy.

5.3.2 Test Case — Photon-Pathway Extraction Across All Energies

In this section, we will extend the method to amplitudes that are functions of energy. We use

Gaussian AnJ(E) such that

AnJ(E) = A0
nJ exp

{
−
[
E − (E0 + nω)

σ

]2
}
eiβnJ , (5.10)
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|AnJ |2 ∆βnJ
Actual Corrected Result Returned Result Actual Corrected

A00 6.10× 10−3 6.100000× 10−3 2.659109× 10−26 0 0
A02 4.10× 10−3 4.100000× 10−3 1.235900× 10−25 0.1465 0.1462
A04 2.00× 10−3 1.999998× 10−3 3.472986× 10−25 5.441 5.4407
A06 1.00× 10−3 1.000003× 10−3 1.212304× 10−25 2.285 2.2853
A11 9810.58 9810.581 2.440733× 10−27 4.132 4.1316
A13 7030.07 7030.068 1.183377× 10−27 0.1514 0.15144
A15 4740.24 4740.242 3.312701× 10−28 1.732 1.7318
A17 2532.00 2531.999 7.394890× 10−28 2.411 2.4115
A20 65880.34 65880.34 6.100000× 10−3 1.701 1.7013
A22 27866.25 27866.25 4.100000× 10−3 3.015 3.0149
A24 22868.33 22868.33 1.999998× 10−3 3.872 3.8722
A26 10702.43 10702.41 1.000003× 10−3 0.1397 0.13970
A31 2784.68 2784.684 9810.581 6.085 6.0853
A33 2020.91 2020.913 7030.068 1.691 1.6906
A35 1495.24 1495.244 4740.242 4.853 4.8534
A37 1038.20 1038.197 2531.999 4.529 4.5291
A40 1.10× 10−1 1.099997× 10−1 65880.34 4.525 4.5255
A42 2.50× 10−1 2.500054× 10−1 27866.25 6.069 6.0693
A44 6.3× 10−1 6.299996× 10−1 22868.33 3.541 3.5406
A46 1.8× 10−1 1.799999× 10−1 10702.41 2.349 2.3485
A51 2.00× 10−4 2.000000× 10−4 2784.684 6.084 6.0845
A53 2.50× 10−3 2.499996× 10−3 2020.913 2.152 2.1522
A55 6.50× 10−3 6.499999× 10−3 1495.244 1.508 1.5074
A57 1.65× 10−3 1.650003× 10−3 1038.197 1.238 1.2387
A60 4.23× 10−14 2.659109× 10−26 1.099997× 10−1 4.2710 2.377
A62 2.65× 10−14 1.235900× 10−25 2.500054× 10−1 2.2781 4.900
A64 1.35× 10−14 3.472986× 10−25 6.299996× 10−1 0.9305 3.607
A66 1.18× 10−14 1.212304× 10−25 1.799999× 10−1 3.712 4.062
A71 7.65× 10−20 2.440733× 10−27 2.000000× 10−4 0.1402 1.039
A73 5.28× 10−20 1.183377× 10−27 2.499996× 10−3 2.882 1.356
A75 3.82× 10−20 3.312701× 10−28 6.499999× 10−3 1.401 5.376
A77 1.63× 10−20 7.394890× 10−28 1.650003× 10−3 0.8394 5.978

Table 5.1: Table shows the values of |AnJ | and βnJ for the 32 amplitudes used to construct the momentum
distribution for our test case, along with the values returned in our fit. It is clear that the returned amplitudes
have undergone a cyclic permutation AnJ → An+2,J (see Sec. 5.2.3). The corrected |AnJ | that undo this
permutation are shown next to the actual values for ease of comparison — all returned amplitudes are reported
to seven significant digits to illustrate the degree of convergence. All relative phases are reported relative to β00

with ∆βnJ ≡ βnJ − β00

.
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where A0
nJ gives the peak of the magnitude |AnJ | at energy E = nω−E0. We use ω = 0.2 a.u.

and E0 = −0.1 a.u., although these choices only shift the amplitudes. A width σ = ω is chosen

such that |AnJ(E)| falls off by roughly one order of magnitude at an energy ±1.5ω away from

its peak. This value gives a full width at half maximum of 0.17 a.u., corresponding roughly to a

pulse with 2.5 cycles (see Sec. 2.2.4). Although the width of individual amplitudes will typically

vary as a function of n and J (see Sec. 2.2.4), we have chosen to make all widths the same for

simplicity.

We again include amplitudes with n = 0 and J = 0 through n = 7 and J = 7. The

resulting amplitudes |AnJ(E)| for our choices are shown in Fig. 5.1. The A0
nJ were selected to

qualitatively mimic the relative magnitudes of amplitudes expected in an actual spectrum — for

example, pathways with larger n are typically smaller, as are amplitudes for higher-order n < J

states. As is clear from Fig. 5.1, the width of the amplitudes allows for visible overlap between

pathways differing by up to ∆n = 3. Overlap between pathways differing by larger net-photon

numbers obviously exists, but it is much smaller.

The phases βnJ are chosen randomly on a uniform distribution from 0 to 2π and are inde-

pendent of energy. This choice is a simplification, but suffices for our test. Energy-dependent
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Figure 5.1: Photon-pathway amplitudes |AnJ(E)| used in constructing our momentum distribution for (a) J = 0
and J = 1, (b) J = 2 and J = 3, (c) J = 4 and J = 5, and (d) J = 6 and J = 7. Net photon numbers n = 0
through n = 7 are included.
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phases are retrieved for HeH+ in Sec. 5.4 and do not significantly complicate the problem. The

fit is first done at the one-photon peak; |Amax| = 2030 and |Amin| = 10−6|Amax| were used. As

discussed in Sec. 5.2.2, the same A — which contains all amplitudes that contribute in the entire

spectrum — is used at every energy. Once corrected for permutations, our retrieved amplitudes

at the one-photon peak agreed to six digits with the known magnitudes and to three digits with

the relative phases — provided that our convergence criteria from Sec. 5.3.1 was met.

The corrected solution found at the one-photon peak was used as the initial guess for neighbor-

ing energies, with this process repeated for the entire spectrum (see Sec. 5.2.2). The magnitude

of each extracted amplitude, |AnJ |, was found to be converged to six digits over the entire energy

range. Figure 5.2 shows our best-fit |AnJ | alongside the model magnitudes from Eq. (5.10). The

phase extraction was carried out at each energy — despite it being a constant in our calcula-

tion. The relative phases were converged to three digits at all energies where their corresponding

amplitudes were converged.
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Figure 5.2: (a)-(h) Photon-pathway amplitudes |AnJ(E)| from Eq. (5.10) are shown in solid lines alongside the
extracted amplitudes (denoted “×” at selected energies) for J = 0 to J = 7. Extracted amplitudes are only
shown within the energy range where they are within five orders of magnitude of the largest AnJ(E).
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5.4 Photon-Pathway Extraction for HeH+

These test cases show that it is possible to retrieve AnJ for a model system. Additional tests

including a larger number of Gaussian amplitudes have also been carried out, with similar levels of

accuracy. In this section, we will move to a realistic system and extract pathways for strong-field

dissociation of HeH+. Calculation of the CEP-dependent momentum distribution from which the

pathways are extracted was discussed in Chap. 3; here, we will focus on the calculations from

that chapter using the v = 1, J = 0 initial state in a 4000-nm, two-cycle pulse with intensity

1014 W/cm2.

We first fit at the energy associated with the lowest-energy peak in the momentum distribution,

which corresponds to net five-photon absorption and occurs at an energy of E = 0.0023 a.u.

The corresponding KER spectrum — shown in Fig. 3.9 — features peaks associated with the

net absorption of n = 5− 10 photons. For our fit, we include the possibility of below-threshold

dissociation [225, 226] with n = 4, along with the possibility of contributions from higher-order

pathways n = 11 and n = 12 that are wide enough to overlap the ten-photon peak, leading us to

use nmin = 4, nmax = 12, Jmin = 0, and Jmax = 12 for A at all energies. Higher-energy solutions

are obtained with our usual method, and the retrieved amplitudes are shown in Fig. 5.3. The

amplitudes were also calculated directly from the wavefunction using Eq. (5.1) and Eq. (5.2).

Comparing the two results shows three digits of agreement at all energies where the magnitudes

met our standard criteria. The relative phases were found to be converged to two digits over this

range.

The agreement of the results in Fig. 5.3 with those from the wavefunction indicates that our

method is capable of accurately extracting photon pathways for HeH+ — where A was 124-

dimensional. With the additional possibility of extracting amplitudes in partitioned energy ranges

(with a different but overlapping A in each region), such a large number of amplitudes will likely

provide an accurate fit for a wide range of problems in strong-field physics. So, while it is a

simple system, we believe that HeH+ serves as a reasonable test of the general applicability of

our method to systems with momentum distributions described by Eq. (5.3).

Examining the |AnJ | in Fig. 5.3, we can see the REMPD splitting of the individual photon
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Figure 5.3: (a)–(h) Extracted photon-pathways |AnJ(E)| for HeH+ dissociation in the X 1Σ+ channel (n = 5
through n = 11). (i) Pathways |An(E)| as defined by Eq. (5.11). Pathways with n = 12 are approximately zero
in this energy range.
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pathways that widen the amplitudes. We proposed this mechanism in Sec. 3.4.2 to explain why

CEP effects were greater for dissociation from v = 1 than v = 0. This effect is not only seen for

n = 5 — the lowest-order pathways expected for dissociation — but propagates to higher-order

pathways in the spectrum as well. In fact, the splitting is even more prominent in n = 6 and

n = 7, and multiple peaks can be seen at some J for most n shown in Fig. 5.3.

The CEP-independent portion of the KER spectrum in Eq. (3.23),

|An(E)|2 =
∑
J

|AnJ(E)|2, (5.11)

is included in Fig. 5.3(i) and provides an illustration of the total overlap between |AnJ |2 with

different n. Figure 5.3(i) makes the splitting of the peaks even more apparent. The right-most

peak in the n = 6 and n = 7 cases closely matches the expected ATD peak (without REMPD)

from energy conservation, which predicts locations of roughly E/ω = 1.2 and 2.2. This suggests

that the resonant bound-bound transition had an energy splitting smaller than the photon energy,

producing a REMPD peak at an energy below the standard ATD peak.

We see from Fig. 5.3(i) that the overlap between pathways with ∆n = 1 is much larger than

for ∆n = 2. For example, |A6|2 and |A7|2 cross at an energy where they are both still larger

than most of the other amplitudes in the spectrum. In fact, the width of |A7|2 is nearly a photon

wide — far exceeding the value of 0.23ω suggested from the arguments in Sec. 2.2.4. Other

pathways in Fig. 5.3(i) also have widths exceeding the bandwidth of the pulse. Amplitudes for

pathways differing by ∆n = 1 in Fig. 5.3 have maximum overlap in the region between the center

of their corresponding |An|— validating our assumption from previous chapters that CEP effects

in the momentum distribution and spatial asymmetry will tend to be largest between peaks in

the spectrum. The REMPD splitting of the peaks does cause the region of overlap to be shifted,

however, with the right-most peak in |A6|2 having very little separation from the left-most peak

of |A7|2. With a slightly larger bandwidth, it might be possible to see significant CEP effects in

the momentum distribution or spatial asymmetry on the peaks themselves.

Figure 5.3 also shows that some below-threshold dissociation (BTD) can occur through n = 4

pathways. This effect is nearly two orders of magnitude smaller than the n = 5 pathways at the
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same energy, but it is still interesting to note its presence. The n = 4 pathway is due entirely

to the bandwidth of the laser pulse — it is the high-end tail of the laser’s power spectrum that

produces this BTD. This effect could be made larger by increasing the bandwidth of the pulse,

or by preparing the system in a more highly excited initial state. In fact, the n = 4 pathway is

larger than the n = 6 pathway at very low energies, with integration of Eq. (5.11) from E/ω = 0

to E/ω = 0.5 showing the probability of the net absorption of 4 photons to be nearly 1.5 times

larger than the net absorption of 6 photons. Because it is the largest even-parity pathway, it is

possible that a signature of BTD would exist for low energies in an angular distribution. Indeed,

one potentially interesting application of our extracted amplitudes is to reconstruct an observable

both with and without the inclusion of specific pathways — allowing us to identify how the

presence of a given pathway affects the spectrum.

Figure 5.3 also shows interesting trends in the J-distribution for a given n. We notice in

Fig. 5.3 that the peak splitting tends to be washed out for higher J , typically disappearing for

values J > n. This can be seen more clearly in the plot of the individual |AnJ | in Fig. 5.4. A

shift in the center of |AnJ | towards higher energies also tends to occur for larger J . For smaller

n, the distribution in J is fairly flat — with all |AnJ | for a given n being roughly the same

order of magnitude in Fig. 5.4. This indicates that effects beyond LOPT theory are particularly

significant in pathways with smaller n, where absorption of more total photons than n is necessary

to populate these J > n states. In contrast, higher n in Fig. 5.3 tend to have very little population

for J > n.

5.5 Closing Remarks

In this chapter, we have proposed a method for extracting photon-pathways directly from a

given momentum distribution and demonstrated its effectiveness. For a model system where the

momentum distribution was given to machine precision by Eq. (5.10), we found that all |AnJ(E)|

could be converged to six digits — provided that they were within five orders of magnitude of

the largest amplitude at that energy. Similarly, relative phases for the system were converged to

three digits over this range. For pathway extraction from a calculated HeH+ spectrum, where
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Figure 5.4: Individual photon-pathway amplitudes |AnJ(E)| for n = 5 and n = 6.

the momentum distribution was converged to four digits, we were still able to accurately extract

pathways — with convergence to three digits in the amplitudes and two digits in the relative

phases.

The high-dimensionality of the pathway extraction for HeH+, coupled with the possibility of

partitioning regions of energy so that fewer amplitudes are needed for the fit, makes us optimistic

that our method will work for more complicated systems. However, there is still much work to be

done. For multi-channel experiments where distinguishable final channels are not resolved, the

number of amplitudes needed in our fit will increase roughly linearly with the number of channels.

Moreover, systems with less strict selection rules will allow parity-unfavored transitions that do

not require n and J to have the same parity — effectively doubling the number of J needed in

our fit.

It is also unlikely that a momentum distribution from experiment will be converged to four
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digits, and fitting with experimental noise will be an obstacle. While initial tests adding random

noise to the Gaussian amplitudes in Sec. 5.3.2 have been successful, this still needs to be extended

to more complicated systems with more realistic errors. While potential issues certainly exist

for amplitude retrieval from experimental spectra of complicated systems, our method will still

certainly apply to a large range of problems. Future work will allow us to more clearly define the

limitations of our method.
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Chapter 6

Multi-Color Phase Control

The previous three chapters have focused on the application of our parametric formalism to single-

color, carrier-envelope phase control. In this chapter, we will return to the more general formula-

tion of our theory in Eq. (2.3) and extend our studies to multi-color control schemes. Multi-color

control via relative phases is, of course, described perturbatively in the classic Brumer-Shapiro

scheme [113–115] discussed in Sec. 1.3. Here we will extend those ideas beyond perturbation

theory and devise a general formalism for treating the problem.

Specifically, we will study the two-color dissociation of D+
2 . As in Chap. 3, we will use our

formalism to express all observables in terms of photon-pathway amplitudes. The most relevant

amplitudes for breakup will be identified with the aid of the dressed potential energy curves from

Sec. 2.3.1, allowing us to make predictions about the phenomena seen in calculated observables.

While we limit ourselves to only D+
2 in this thesis, application of our theory to understanding

observables for other system (whether theoretical or experimental) is straightforward.

6.1 D+
2 Dissociation in a Two-Color Field

6.1.1 Theoretical Details

We begin by studying the dissociation of D+
2 in a two-color field. As in Chap. 3 for HeH+,

we will solve the TDSE directly; the expansion of the wavefunction in our parametric formal-

ism will be used only in predicting and interpreting phenomena in the final results, not in the

calculations themselves. Using the Born-Oppenheimer representation, we break the Hamiltonian
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into electronic and nuclear parts — once again arriving at Eq. (3.4). Here, the reduced mass is

µAB = md/2 — where md is the mass of the deuteron — and d gives the dipole for the system

in the center-of-mass frame. The electronic coordinates of the wavefunction are expanded on the

basis Φα that solves the eigenvalue problem

HelΦα(R; r) = Uα(R)Φα(R; r). (6.1)

In Eq. (6.1), α is the set of quantum numbers necessary to specify an individual electronic

state. The potentials, Uα, and electronic wavefunctions, Φα, are found using prolate spherical

coordinates with the methods outlined for HD+ in Ref. [227].

The polar and azimuthal angles of the internuclear vector (θ and φ, respectively) are expanded

using a linear combination ΩJπ
ΛM of Wigner D functions D̃J

ΛM(θ, φ, 0). Because we will work only

with states that have total nuclear spin S = 0, ΩJπ
ΛM is chosen such that the spatial part of

the wavefunction is symmetric under the exchange of the identical nuclei. More details of this

approach for symmetrization can be found in Ref. [228], where the problem was worked out for

the general symmetrization/anti-symmetrization of the wavefunction for H+
2 using our specific

conventions.

Normalization of ΩJπ
ΛM(θ, φ, 0) is carried out over two angles rather than three [229]. The

indices of ΩJπ
ΛM correspond to the total parity π, the total orbital angular momentum J , its

projection onto the lab-frame z-axis M , and the magnitude of its projection onto the internuclear

axis Λ (the body-frame z-axis). The index Λ is, of course, one of the quantum numbers in the

set α. With these choices, the total wavefunction can be written as

Ψ(R, r, t) =
1

R5/2

∑
JMαπ

FJMαπ(R, t)ΩJπ
ΛM(θ, φ, 0)Φα(R; r). (6.2)

Substituting into the TDSE, Eq. (3.4) reduces to the system of coupled equations:

i
∂

∂t
FJMαπ =

(
− 1

2µAB

∂2

∂R2
+
J(J + 1)− Λ2

2µABR2
+ Uα

)
FJMαπ

−
∑
J ′α′π′

〈ΦαΩJπ
ΛM |E(t) · d|Φα′Ω

J ′π′

Λ′M〉FJ ′Mα′π′ . (6.3)
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We include only the lowest two electronic channels in Eq. (6.3) — 1sσg and 2pσu, both of

which have Λ = 0. Excitation to higher electronic channels, along with ionization, is neglected in

our calculations. However, for the laser parameters we consider, this approximation is expected to

work well within the length gauge [195]. While off-diagonal non-Born-Oppenheimer couplings and

Coriolis couplings between the 1sσg and 2pσu are zero, Eq. (6.3) neglects the diagonal elements

of the non-Born-Oppenheimer couplings.

Finally, the two-color electric field used for our calculations is given by

E(t) = E1(t) cos (ωt+ ϕ1) + E2(t) cos (2 [ω(t− τ) + ϕ1]) (6.4)

This choice of electric field reflects the case where the field is composed of a fundamental, ω1 = ω,

and a harmonic, ω2 = 2ω, that is generated directly from the fundamental. When the harmonic

is generated from the fundamental, the phase ϕ2 in Eq. (2.2) will not be independent of ϕ1;

rather, it will be the sum of 2ϕ1 and an additional phase (which is independent of ϕ1). As such,

we express the phase as ϕ2 = −2ωτ + 2ϕ1. The choice makes τ a temporal delay between the

carrier-waves of the two pulses.

6.1.2 Numerical Details

The solution of Eq. (6.3) is found using the methods detailed in Ref. [228]. Conceptually, the

methods are very similar to those used for solving the nuclear equation for HeH+ in Eq. (3.8).

The initial, bound states for the system are found by solving the eigenvalue problem for the field-

free version of Eq. (6.3); numerically, this is accomplished using a generalized finite-differencing

method [208]. For this problem, the non-uniform grid in R is determined from the local WKB

wavelength associated with nuclear motion in the 1sσg channel at an energy of 0.12 a.u. above

the large R threshold. This value corresponds to the largest energy we consider in any of our

calculations and allows for the (net) absorption of two fundamental photons or one harmonic pho-

ton. We used 130 points per local wavelength. Finally, the resultant Hamiltonian is diagonalized

to obtain the ro-vibrational states χvJg and χvJu in the 1sσg and 2pσu channels.

Initial states are propagated by applying the short-time propagator using the Crank-Nicolson
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and split-operator techniques [209] discussed in Sec. 3.1.2. The number of partial waves included

is increased dynamically during the calculations (see Sec. 3.1.2), and the time step is 0.12 a.u.

The initial and final times in our calculations are chosen to correspond to the times on both sides

of t = 0 when the pulse envelope has fallen to an intensity of 107 W/cm2. All parameters were

chosen to give convergence of three digits in the calculated KER spectrum up to our maximum

energy of interest, 0.12 a.u. As in Chap. 3, we use a Gaussian pulse envelope for both colors

— here, τFWHM=40 fs is used for both pulses. Intensities are chosen as 1013 and 1012 W/cm2,

respectively, for the fundamental and harmonic pulses with wavelengths of 790 and 395 nm.

6.1.3 Observables in Parametric Formalism

As in previous chapters, all of the observables that we study will be calculated directly from

the momentum distribution of the dissociating fragments. In order to construct a scattering

state corresponding to the lowest-energy dissociation limit, D(1s)+d, a linear combination of

scattering states in the 1sσg and 2pσu channels is required. Taking identical particle symmetry

into account (see Ref. [228]) the resulting distribution associated with the deuteron and deuterium

atom traveling apart with relative momentum k is given by

∂2P

∂E∂θk
= 2π

∣∣∣∑
J

even

(−i)JeiδJgYJ(θk)〈EJMg|FJMg〉+
∑
J
odd

(−i)JeiδJuYJ(θk)〈EJMu|FJMu〉
∣∣∣2.
(6.5)

In Eq. (6.5), |EJMg〉 and |EJMu〉 are the field-free continuum states in the 1sσg and 2pσu

channels, and δJg and δJu are the scattering phase shifts. We have dropped the state label π,

as it is not an independent quantity for Λ = 0 states and is given by π = (−1)J . The electronic

channels 1sσg and 2pσu are labeled by α = g and α = u. As in Chap. 3, E and θk are the

energy and angle (measured relative to the polarization axis) corresponding to the momentum

k. Integration over the azimuthal angle of the momentum k has already been carried out. It is

worth nothing that calculations of the momentum distribution and observables derived from it

have been previously carried out for the two-color dissociation of D+
2 and its isotopologues (see, for

example Ref. [230–235]). However, our parametric formalism provides additional information on
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the pathways that can interfere to produce control over a given observable, and gives information

about the properties of this control.

Expanding the total wavefunction within our parametric formalism with ϕ2 = −2ωτ + 2ϕ1

and ω2 = 2ω, Eq. (2.3) gives

Ψ(R, r, t) =
1

R5/2

∑
αJn1n2

FαJMn1n2(R, t)Ω̃
Jπ
M0(θ, φ, 0)Φα(R; r)e−in1ϕ1ei2n2(ωτ−ϕ1). (6.6)

Although writing ϕ2 in such a way that it depends on ϕ1 breaks from our convention in Sec. 2.2.3,

substituting Eq. (6.6) into the TDSE in Eq. (6.3) will still give the appropriate −n · ω energy

shift and the usual interpretation of n. The momentum distribution can be expressed in terms of

interfering pathways as

∂2P

∂E∂θk
=
∑
α

Jn1n2
J ′n′1n

′
2

A
(α)
n1n2J

A
(α)∗
n′1n
′
2J
′YJYJ ′e

−i[(n1−n′1)+2(n2−n′2)]ϕ1ei2(n2−n′2)ωτ

+2 Re
∑
Jn1n2
J ′n′1n

′
2

A
(g)
n1n2J

A
(u)∗
n′1n
′
2J
′YJYJ ′e

−i[(n1−n′1)+2(n2−n′2)]ϕ1ei2(n2−n′2)ωτ , (6.7)

where A
(α)
n1n2J

=
√

2π(−i)JeiδJα〈EJMα|FαJMn1n2〉 is associated with the absorption of n1 fun-

damental and n2 harmonic photons to end in the electronic state α with energy E and angular

momentum J . We choose not to label photon-pathway amplitudes by M , as only a single M

is involved in any of our individual calculations. The summations in Eq. (6.7) are restricted by

dipole-selection rules: A
(α)
n1n2J

will be summed only over even J and even values of n1 + n2 for

α = g, and only over odd J and odd values of n1 + n2 for α = u.

In addition to the momentum distribution, we will also examine the normalized spatial asym-

metry — defined here as

A(E) =

[
Pup(E)− Pdown(E)

](
dP

dE

)−1

. (6.8)

Because the calculations shown in Sec. 6.1.4 were originally carried out as part of a collaboration

with Dr. Ben-Itzhak’s experimental group — who made the first ever measurements on two-color

control in D+
2 and HD+ ion beams [3] — our choice to normalize by the total KER rather than
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the CEP-averaged as in Eq. (3.18) was made to match their measurements. The numerator of

this expression can be shown to give

Pup(E)− Pdown(E) =
√
πRe

∑
Jn1n2
J ′n′1n

′
2

CJJ ′A
(g)
n1n2J

A
(u)∗
n′1n
′
2J
′e
−i[(n1−n′1)+2(n2−n′2)]ϕ1ei2(n2−n′2)ωτ , (6.9)

where CJJ ′ are given by Eq. (3.22). The KER in the denominator is given by

dP

dE
= Pup + Pdown =

∑
Jα
n1n2
n′1n
′
2

A
(α)
n1n2J

A
(α)∗
n′1n
′
2J
e−i[(n1−n′1)+2(n2−n′2)]ϕ1ei2(n2−n′2)ωτ . (6.10)

The integration over all angles in the KER has eliminated the interference between any path-

ways not ending with the same J — which includes all the terms in Eq. (6.9). In contrast, the

numerator in A exclusively allows for interference between states with different J — eliminating

all interference between pathways ending in the same electronic channel. In all the sums above,

the values of n1 +n2 associated with A
(α)
n1n2J

are restricted to have the same parity as J , following

from Eq. (6.7).

It is worth noting that the results in Eq. (6.9) and Eq. (6.10) are incredibly similar to those

for HeH+ in Eq. (3.21) and Eq. (3.23) — with the obvious exception that the latter are for a

single color. The expression for A in the two systems is identical up to a factor of 2, with the

spatial asymmetry in both systems allowing only for interference between pathways that end at

the same energy and with different J . The KER spectra of the two systems also have the same

analytic expression, with both only allowing for the interference between pathways ending at the

same energy and with the same J .

Setting n2 = n′2 = 0 in Eq. (6.9) and Eq. (6.10) would give the single-color CEP control over

the two observables for D+
2 . The resultant expression shows that the control over the interfering

pathways is also identical to that seen in HeH+. The only real difference between the results for

the two systems is that the different parity J are split between two electronic channels in D+
2 .

The similarity between observables for different systems in our parametric formalism is, of course,

the basis of the argument that the methods in Chap. 5 could be extended to many systems.
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6.1.4 D+
2 — Results and Discussion

We begin by examining the momentum distribution — which is shown in Fig. 6.1 for a field

with only the fundamental, only the harmonic, and with both colors (with τ = 0). The results

shown include a Frank-Condon average over all 28 initial vibrational states within the J = 2,

1sσg channel. This averaging is done to better match the conditions in the relevant experiment,

where D+
2 ions were created in a distribution of initial states through electron-impact ionization

of D2.

In a Frank-Condon average, the ionization step is assumed to be sudden (relative to the

time scale of nuclear motion) resulting in the nuclear state of the D+
2 ion being approximately

unchanged from that of D2 [20]. Therefore, the D2 nuclear state is expanded on the D+
2 ro-

vibrational basis, with the expansion coefficients giving the Frank-Condon distribution of the ion

states for a given J . The Frank-Condon distribution has been shown to give a good approximation

to the actual distribution for electron-impact ionization [236]. We choose to use J = 2 because it

the most populated rotational state in a thermal distribution for temperatures exceeding 300 K,

and such temperatures are expected in an ion-beam experiment. A statistically weighted average

over all M values was also included in the spectra in Fig. 6.1.

The single-color momentum distributions in Fig. 6.1 show peaks associated with the absorption

of one net-photon from the individual initial vibrational states. We explain the pathways associ-

ated with these peaks using the diabatic dressed potential energy curves discussed in Sec. 2.3.1;

a slightly modified version of Fig. 2.4 is included here as Fig. 6.2 for ease of reading. As discussed

in Sec. 2.3.1, the use of diabatic dressed potentials to study dissociation is nothing new (see, for

example, Ref. [191–200]). What our work provides is the ability to use the information found in

these potentials to construct a given observable and make predication’s about the control that

can be obtained over it — using a formalism that is essentially exact.

In the single-color, 790-nm field (ω = 1.58 eV), one-photon dissociation proceeds through the

pathway labeled α. From our discussion in Sec. 2.3.2, we know that resonant transitions occur

near crossings of the diabatic potentials. Comparing the crossing energy of 1sσg and 2pσu− 1ω1

(pathway α) to the 1sσg, J = 2 vibrational energies, we see that v = 13 is closest to resonant
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Figure 6.1: (a) Franck-Condon averaged momentum distribution for D+
2 dissociation in (a) a 790-nm pulse (b) a

395-nm pulse, and (c) the combined two-color 790+395-nm pulse. A zoomed-in cut near E = 0.5 eV is included
in (c) to illustrate the asymmetry about cos θk = ±1 that is created in the two-color case by the interference of
pathways α and γ (Fig. 6.2). Red arrows indicate the dissociation energy expected for near-resonant dissociation
from (a) v = 13 and (b) v = 8.

and, therefore, should be the most likely to dissociate. Nearby vibrational states also dissociate,

which can be understood from the adiabatic representation since the avoided crossing can grow

large enough to allow a range of vibrational states to escape [192,195,237–240]. Our calculations

for individual vibrational states show that a dissociation probability greater than ten percent can

be seen as low as v = 7. For vibrational states separated by energies larger than the bandwidth

of the pulse, dissociation from each vibrational state creates a clear peak — such peaks can be

seen in Fig. 6.1(a).

The single-color, 395-nm momentum distribution can be understood in the same fashion.

Figure 6.2 shows that the one-photon process for this wavelength follows the pathway labeled

β. The crossing associated with this pathway — 1sσg → 2pσu − 1ω2 — is nearly resonant with
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Figure 6.2: Dressed potentials for D+
2 molecular ion in a 790-nm (a), 395-nm (b), and two-color 790+395-nm

field (c). 1sσg potentials are shown in black, 2pσu channels in red. The horizontal lines give the v = 8 and
v = 13 eigenenergies, the individual arrows represent different pathways for dissociation.

the v = 8 vibrational state. As with the 790-nm pulse, multiple distinct peaks associated with

dissociation from states near v = 8 can be seen in the spectrum. The clearer vibrational structure

seen in the spectrum for 395 nm (when compared to 790 nm) can potentially be explained by

two things. One, the larger separation in energy of the lower-lying vibrational states near v = 8

allows for a clearer resolution of the vibrational structure. Two, the ratio ∆ωFWHM/ω is smaller

for 395 nm than 790 nm since both pulses have the same duration.

Figure 6.2 shows that the combined two-color field opens up a new pathway γ, which proceeds

via the absorption of a single harmonic photon onto the 2pσu − 0ω1 − 1ω2 channel, followed by

the emission of a single fundamental photon to end on the 1sσg + 1ω1 − 1ω2 channel. Because

the initial crossing associated with γ occurs at the same energy as β’s crossing, dissociation

along γ will also be most probable for states near v = 8 — providing contributions to the

momentum distribution similar to those in Fig. 6.1(b), but shifted down in energy by 1.58 eV due

to the stimulated emission of a 790-nm photon at the next crossing. The single-color pathway

α associated with the 790-nm pulse produces dissociation for vibrational states as low as v = 7,

and for a given initial vibrational state will result in dissociation at the same energy as pathway γ.

This means that for a small range of vibrational states above v = 7, there will be two pathways
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that dissociate to different channels and end at the same energy.

From Eq. (6.10), we see that pathways α and γ will not interfere in the KER — due to the

two pathways ending in different channels (and thus different Js). However, these pathways will

interfere in the momentum distribution and the spatial asymmetry — as shown in Eq. (6.7) and

Eq. (6.9). This interference in the momentum distribution can be seen in Fig. 6.1(c), where

a clear (although somewhat subtle) asymmetry can be seen about the cos θk = ±1 line of

the plot. This asymmetry is most prominent at roughly E = 0.5 eV. Equation (6.9) explicitly

shows that asymmetry can only arise from the interference between states ending in different

electronic channels; i.e., the features seen in Fig. 6.1(c) can only be created by interference

between pathways α and γ.

Moreover, because α and γ differ in both n1 and n2 — n = (1, 0) and n = (−1, 1),

respectively — the interference between these pathways will be controllable via either the CEP or

the delay τ . Control over the spatial asymmetry via τ is shown in Fig. 6.3 for calculations from

the initial vibrational states v = 8 and v = 9. These calculations include the average over M and

allow us to directly examine the vibrational states expected to provide the largest contribution to

the interference seen in Fig. 6.1(c). Both the numerator and denominator of the asymmetry —

Eq. (6.9) and Eq. (6.10) — are independently integrated over the low-energy range where the

two-color effects are most prominent (energies from 0.14 to 0.49 eV, or 0.005 to 0.018 a.u.).

Because only the numerator of the spatial asymmetry allows for interference between α and
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Figure 6.3: Spatial asymmetry in Eq. (6.8), with both the numerator and denominator independently integrated
over the energy range of 0.14 to 0.49 eV (0.005 to 0.018 a.u.). Initial states of v = 8 and v = 9 are used,
with fundamental (790 nm) and harmonic (395 nm) pulses of intensities (a) 1013 W/cm2 and 1012 W/cm2,
respectively, and (b) 1012 W/cm2 and 1011 W/cm2, respectively.
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γ, all τ -dependence is shown in Eq. (6.9). The predicted periodicity in ωτ from Eq. (6.9) is given

by π/(n2 − n′2), giving a period of π for α and γ. This prediction matches the period in the

calculations, as seen in from Fig. 6.8.

All calculations were repeated for a fundamental pulse with intensity 1012 W/cm2 and har-

monic pulse with intensity 1011 W/cm2; this result is shown alongside the higher intensity cal-

culations in Fig. (6.8). The control in τ provided over both states in Fig. 6.8(b) is considerably

smaller than for the higher-intensity case. Clear τ -control can still be seen for v = 9, indicating

that both pathways α and γ remain open for this vibrational state (albeit with lower associated

probabilities). Control via τ over the v = 8 state, however, has all but disappeared. It seems

unlikely that γ has closed to v = 8, as γ is resonant with this state (and the pathway is still open

in v = 9). It is possible that α has closed to the v = 8 state, as sufficient intensity is needed to

open the crossing for lower-lying vibrational states to dissociate on this pathway. However, more

work needs to be done to see if this is the case.

6.1.5 Branching Ratio in Heteronuclear Systems — HD+

In the dissociation of D+
2 — and other homonuclear diatomics — the Hamiltonian is symmetric

under the exchange of the nuclei. This symmetry results in electronic wavefunctions with well-

defined parity under reflection about the nuclear center of mass in the body-fixed frame. As such,

taking a linear combination of scattering states in the different channels is necessary in order to

construct a scattering state with the correct asymptotic behavior. Once permutation eigenstates

are constructed from these linear combinations, and identical particle symmetries are taken into

account, the end result is that multiple electronic channels with the same asymptotic energy give

only a single momentum distribution. This corresponds to the fact that in experiment, there is

only one state to be measured.

In contrast, for heteronuclear molecules — where the reflection symmetry is broken by charge

or mass asymmetry — a momentum distribution can be calculated/measured in each individual

channel. This, of course, is where control over electron localization actually lies — the ability to

steer the electron to different nuclear centers and create unique products. As such, it is useful

to examine this control within our parametric formalism. While it is more common to use angle-
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and energy-integrated quantities, we will look directly at control over the difference between two

momentum distributions. We will refer to these as channel asymmetries throughout this section,

although that is not the typical use of the term. Of course, it is possible to define more standard

quantities such as branching ratios from these momentum distributions, so these results can easily

be extended to those observables.

The simplest heteronuclear molecule, HD+, has potentials identical to H+
2 in the Born-

Oppenheimer approximation. The inclusion of non-Born-Oppenheimer effects will create two

electronic channels separated by 3.7 meV due to the mass asymmetry — corresponding to dis-

sociation products H(1s) + d and D(1s) + p. While this system has served as a benchmark for

calculations including effects beyond Born-Oppenheimer [102, 206, 241–244], our parametric for-

malism enables predictions about control via the CEP or τ over the channel asymmetries without

the need for calculations. In this section, we will focus on how the presence of permanent-dipole

transitions can be identified from a two-color channel asymmetry.

For HD+ in the two-color field defined by Eq. (6.4), the momentum distribution for one of

the lowest two channels, α, is given in our parametric formalism by

∂2Pα
∂E∂θk

=
∑
Jn1n2
J ′n′1n

′
2

A
(α)
n1n2J

A
(α)∗
n′1n
′
2J
′YJYJ ′e

−i[(n1−n′1)+2(n2−n′2)]ϕ1ei2(n2−n′2)ωτ . (6.11)

Equation (6.11) is simply Eq. (6.7) for D+
2 without the cross term between channels, and

A
(α)
n1n2J

has the same definition and physical interpretation that it had for D+
2 . Parity restrictions

still require n1 + n2 to have the same parity as J , but here all J are included in every electronic

channel as a result of the permanent dipole. In Eq. (6.11), E will refer to total energy as opposed

to KER in order to avoid the complication of measuring E in the two distributions with respect

to a different threshold.

Because the channel asymmetry we defined is simply the difference between the two mo-

mentum distributions, Eq. (6.11) shows that control via τ is possible only when two pathways

defined by (n1, n2) and (n′1, n
′
2) from the same initial state end at the same energy E and in the

same electronic channel. Additionally, energy conservation — assuming absorption at the central

frequency — requires that n1 + 2n2 = n′1 + 2n′2, implying that n1 and n′1 must always have the
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Figure 6.4: Multiple pathways for HD+ dissociation are shown — red and blue arrows indicate ω and 2ω electronic
transitions (respectively), the green arrow indicates a 2ω permanent-dipole transition. The final electronic channel
is labeled above each pathway. The first three sets of pathways have n2 − n′2 = 1 and illustrate that it is not
possible for such pathways to end in the same electronic state for purely electronic transitions. The fourth set
of pathways shows how a permanent-dipole transition allows n2 − n′2 = 1 to end in the same electronic channel.
The final set of pathways shows that for n2 − n′2 = 2, it is possible for two pathways involving only electronic
transitions to end in the same electronic state.

same parity for interfering pathways.

From Eq. (6.11), oscillations in the channel asymmetry with period π/ω in τ occur only when

two pathways with |n2 − n′2| = 1 interfere. Combined with the parity restrictions on n1 and n′1,

this means that π/ω periodicity can only be observed in the channel asymmetry when a pathway

involving an even number of photons n1 +n2, interferes with a pathway involving an odd number

of photons n1 +n2. For purely electronic transitions, where the exchange of each photon causes a

change in the electronic state, such pathways cannot interfere in Eq. (6.11) because they will end

in different electronic channels. This can be seen in the first three sets of pathways in Fig. 6.4, and

easily shown to be true in general. In contrast, if permanent-dipole or non-adiabatic transitions

occur, then pathways with these photon numbers can end in the same electronic channel and

interfere, as shown in the fourth set of pathways in Fig. 6.4. Consequently, the existence of π/ω

periodicity in the channel asymmetry serves as a signature for permanent-dipole or non-adiabatic

transitions.

Oscillations in the channel asymmetry with π/(2ω) require pathways with |n2 − n′2| = 2.

In this case, it is possible for two pathways involving only electronic transitions to end in the

same electronic channel — as is shown in Fig 6.4. More generally, any interference between
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pathways with odd n2 − n′2 will require a permanent-dipole or non-adiabatic transition, while

any interference between pathways with even n2 − n′2 can occur exclusively through electronic

transitions. As such, the observation of any periodicity corresponding to odd n2−n′2 is indicative

of the occurrence of permanent-dipole or non-adiabatic transitions.

Integrating the momentum distributions in Eq. (6.11) over all angles adds the constraint that

pathways ending in the same electronic channel must also have the same angular momentum J .

Because J → J ± 1 for each photon exchange, this requires that (n1 + n2) and (n′1 + n′2) have

the same parity, i.e., a pathway involving an odd number of total photons can’t end with the

same J as a pathway involving an even number. As was previously indicated, energy conservation

gives n1 − n′1 = 2(n′2 − n2) — which requires n1 and n′1 to have the same parity in order to

be a multiple of two. Combining these two parity restrictions, we see that n2 and n′2 must have

the same parity to interfere. Because only even n2 − n′2 can interfere in the angular-integrated

branching ratio, there is no clear signature of permanent-dipole or non-adiabatic transitions in

this spectrum. Such transitions can, of course, still be present. However, there won’t be a way

to identify them solely from a two-color spectrum using our formalism.

6.2 Closing Remarks

In this chapter, we have applied the more general form of our parametric formalism in order to

understand the multi-color control that can be obtained through variation of the relative phase

between multiple colors. The dressed, diabatic potentials that are a direct consequence of our

formalism provided a simple method for identifying relevant pathways that lead to control in the

dissociation of D+
2 . Calculations for the system served to validate the predictions of our theory.

Similarly, pathway analysis applied to heteronuclear HD+ was able to make predictions about

control over the channel asymmetry without the need for detailed calculations.

Because of the generality of our formalism, our methodology can be extended to many other

systems. Expressing the observables of other diatomic molecules in terms of photon-pathways —

and identifying the most relevant pathways from Born-Oppenheimer potentials — is incredibly

straightforward. Similarly, multi-electron atoms can be studied in an adiabatic hyperspherical
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representation [245] in the same fashion. Indeed, we have taken this approach to study the

ionization of helium in an attosecond pulse train [2]. More generally, however, any system that

can be understood in terms of motion along potential curves is a good candidate for study within

our picture. For example, a complex chemical process with dynamics that occur mainly along a

specific reaction coordinate could also be understood within a dressed potential picture, allowing

for the possibility of understanding how the reaction can be controlled through the use of CEP

or multi-color pulses.
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Chapter 7

Final Remarks

In this thesis, we have outlined our group’s parametric formalism for CEP and multi-color control.

The derivation of this formalism is based solely on the properties of the incident laser pulse; as

such, it can be applied to intense field interactions with any system — provided that the electric

field is given by Eq. (2.2). The work in this thesis, and our group’s previous works, have only

begun to scratch the surface of the potential applications of our formalism. It is almost certain

that it will continue to be applied to increasingly complex problems in the years to come.

We have shown in this thesis how our formalism leads to the natural interpretation of control in

terms of the interference between different net photon pathways. The most likely pathways taken

by a system can be predicted from the dressed potentials that arise naturally from in formalism

(Sec. 2.3.1 and Sec.2.3.2), or through the use of photon diagrams like those in Sec. 2.2.3 and

Sec. 2.2.4. Because all observables can be expressed in terms of the interference between these

pathways, information about the relevant pathways allows us to easily predict the form of a given

observable and the control provided over it by varying the CEP or relative phase between colors.

These methods were applied successfully in this thesis to understand CEP control over dissociation

of HeH+ and two-color control of D+
2 dissociation. We were also able to make predictions about

expected channel asymmetries in HD+.

In addition to applying our formalism in the above manner to a variety of new problems, this

thesis contained our group’s first work on using the formalism to directly extract information

from a measured spectrum. In Chap. 4, we were able to provide new insights into the physical
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mechanisms that determine the shape of experimental PAPs commonly used for CEP characteri-

zation. There, we were able to show that deviations from the ideal circular PAP occur due to the

interference between photon pathways with ∆n ≥ 2. We were not only able to make suggestions

for way to minimize these higher-order effects, but also provided a general formula that applied

to CEP extraction from any PAP when only ∆n = 1 pathways interfere — even when the PAP

was not circular. Furthermore, we explored the idea of using our formalism to improve CEP

extraction for a PAP with higher-order interferences. While the improvement provided by our

suggested method was small, it was still interesting to see how well our method fit the test data

to which it was applied.

We continued this idea of extracting information from a measured spectrum in Chap. 5,

where we developed a novel method for directly extracting photon pathways from a momentum

distribution. By applying our method to a simple model system, we were able to identify potential

problems with non-unique solutions, and to provide simple methods for overcoming these issues.

With these insights, we were able to accurately extract photon-pathway amplitudes and relative

phases for HeH+ from our calculated CEP-dependent momentum distribution. Although Chap. 5

mainly served to outline our method and demonstrate its accuracy, we were able to see a number

of interesting features in the extracted amplitudes for HeH+. For example, the REMPD peak-

broadening we discussed in Chap. 3 was incredibly apparent in the individual photon pathways.

Most of the features of the photon pathways for HeH+ were easily understood without direct

calculation — which was, of course, our method for predicting the form of the momentum

distribution in Chap. 3. In other systems, the form of these pathways will not always be so

apparent. The next step in our this work will be to study the cause of more complicated features

— for example, the extraction of the pathways responsible for creating the characteristic plateau

in an ATI spectrum. Of course the main benefit of our method is its ability to be applied to

experimental spectra, which can be measured for much more complicated systems than those

that can be studied through calculations. A clear future direction is also to apply our methods

to these spectra.

While there is still much work to be done with pathway extraction, our work thus far provides

us with confidence for future applications. The extraction of pathways for HeH+ used a fit with
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62 amplitudes; considering the possibility of partitioning the energies in the spectrum, such a large

number of pathways will likely be sufficient for studying a wide range of problems in strong-field

physics. Also, while our method has yet to be tested on experimental spectra, our work in CEP

extraction provides optimism that the the parametric formalism can provide a quality fit on data

with error bars.
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[56] V. A. Kostelecký and A. J. Vargas, “Lorentz and CPT tests with hydrogen, antihydrogen,

and related systems,” Phys. Rev. D 92, 056002 (2015).

URL https://link.aps.org/doi/10.1103/PhysRevD.92.056002

[57] F. Biraben, “Spectroscopy of atomic hydrogen,” The European Physical Journal Special

Topics 172, 109 (2009).

URL https://doi.org/10.1140/epjst/e2009-01045-3

[58] G. Grynberg and B. Cagnac, “Doppler-free multiphotonic spectroscopy,” Reports on

Progress in Physics 40, 791 (1977).

URL https://doi.org/10.1088/0034-4885/40/7/002

[59] P. Agostini, F. Fabre, G. Mainfray, G. Petite, and N. K. Rahman, “Free-free transitions

following six-photon ionization of xenon atoms,” Phys. Rev. Lett. 42, 1127 (1979).

URL http://link.aps.org/doi/10.1103/PhysRevLett.42.1127

[60] W. Becker, F. Grasbon, R. Kopold, D. Milos̆ević, G. Paulus, and H. Walther, “Above-
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Czwalinna, S. Deinert, S. Düsterer, A. Hans, G. Hartmann, C. Haunhorst, M. Kuhlmann, S.

Palutke, R. Röhlsberger, J, J. Rönsch-Schulenburg, P. Schmidt, S. Skruszewicz, S. Tolekis,

J. Viefhaus, M. Martins, A. Knie, D. Kip, and T. Laarmann, “Auger electron wave packet

interferometry on extreme timescales with coherent soft x-rays,” Journal of Physics B:

Atomic, Molecular and Optical Physics 53, 244008 (2020).

URL https://dx.doi.org/10.1088/1361-6455/abc661

[92] D. Schwickert, M. Ruberti, P. Kolorenc̆, S. Usenko, A. Przystawik, K. Baev, I. Baev, M.

Braune, L. Bocklage, M. K. Czwalinna, S. Deinert, S. Düsterer, A. Hans, G. Hartmann, C.
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[186] P. Agostini, J. Kupersztych, L. A. Lompré, G. Petite, and F. m. c. Yergeau, “Direct evidence

of ponderomotive effects via laser pulse duration in above-threshold ionization,” Phys. Rev.

A 36, 4111 (1987).

URL https://link.aps.org/doi/10.1103/PhysRevA.36.4111

[187] J. H. Eberly and J. Javanainen, “Above-threshold ionisation,” European Journal of Physics

9, 265 (1988).

URL https://dx.doi.org/10.1088/0143-0807/9/4/004

[188] H. R. Reiss, “Limits on tunneling theories of strong-field ionization,” Phys. Rev. Lett. 101,

043002 (2008).

URL https://link.aps.org/doi/10.1103/PhysRevLett.101.043002

145

http://stacks.iop.org/0953-4075/47/i=19/a=195601
http://link.aps.org/doi/10.1103/PhysRevA.87.023407
https://dx.doi.org/10.1088/1361-6455/abf731
https://link.aps.org/doi/10.1103/PhysRevLett.16.1054
https://link.aps.org/doi/10.1103/PhysRevA.36.4111
https://dx.doi.org/10.1088/0143-0807/9/4/004
https://link.aps.org/doi/10.1103/PhysRevLett.101.043002


[189] A. Ludwig, J. Maurer, B. W. Mayer, C. R. Phillips, L. Gallmann, and U. Keller, “Break-

down of the dipole approximation in strong-field ionization,” Phys. Rev. Lett. 113, 243001

(2014).

URL https://link.aps.org/doi/10.1103/PhysRevLett.113.243001

[190] F. Weinhold and C. R. Landis, Discovering Chemistry With Natural Bond Orbitals: Ap-

pendix E (2012), first ed.

[191] X. He, O. Atabek, and A. Giusti-Suzor, “Semiadiabatic treatment of photodissociation in

strong laser fields,” Phys. Rev. A 42, 1585 (1990).

URL https://link.aps.org/doi/10.1103/PhysRevA.42.1585

[192] P. H. Bucksbaum, A. Zavriyev, H. G. Muller, and D. W. Schumacher, “Softening of the

H+
2 molecular bond in intense laser fields,” Phys. Rev. Lett. 64, 1883 (1990).

URL http://link.aps.org/doi/10.1103/PhysRevLett.64.1883

[193] I. Maruyama, T. Sako, and K. Yamanouchi, “Time-dependent nuclear wavepacket dynamics

of H+
2 by quasi-stationary floquet approach,” Journal of Physics B: Atomic, Molecular and

Optical Physics 37, 3919 (2004).

URL https://dx.doi.org/10.1088/0953-4075/37/19/011

[194] J. H. Posthumus, “The dynamics of small molecules in intense laser fields,” Rep. Prog.

Phys. 67, 623 (2004).

URL http://stacks.iop.org/0034-4885/67/i=5/a=R01

[195] A. Giusti-Suzor, F. H. Mies, L. F. DiMauro, E. Charron, and B. Yang, “Dynamics of H+
2

in intense laser fields,” J. Phys. B 28, 309 (1995).

URL http://stacks.iop.org/0953-4075/28/309

[196] J. J. Hua and B. D. Esry, “The role of mass in the carrier-envelope phase effect for H+
2

dissociation,” J. Phys. B 42, 085601 (2009).

URL https://dx.doi.org/10.1088/0953-4075/42/8/085601

146

https://link.aps.org/doi/10.1103/PhysRevLett.113.243001
https://link.aps.org/doi/10.1103/PhysRevA.42.1585
http://link.aps.org/doi/10.1103/PhysRevLett.64.1883
https://dx.doi.org/10.1088/0953-4075/37/19/011
http://stacks.iop.org/0034-4885/67/i=5/a=R01
http://stacks.iop.org/0953-4075/28/309
https://dx.doi.org/10.1088/0953-4075/42/8/085601


[197] J. McKenna, A. M. Sayler, B. Gaire, N. G. Johnson, E. Parke, K. D. Carnes, B. D. Esry, and

I. Ben-Itzhak, “Dissociation and ionization of an HD+ beam induced by intense 395-nm

ultrashort laser pulses,” Phys. Rev. A 80, 023421 (2009).

URL https://link.aps.org/doi/10.1103/PhysRevA.80.023421

[198] L. Graham, M. Zohrabi, B. Gaire, U. Ablikim, B. Jochim, B. Berry, T. Severt, K. J. Betsch,

A. M. Summers, U. Lev, O. Heber, D. Zajfman, I. D. Williams, K. D. Carnes, B. D. Esry,

and I. Ben-Itzhak, “Fragmentation of CD+ induced by intense ultrashort laser pulses,”

Phys. Rev. A 91, 023414 (2015).

URL https://link.aps.org/doi/10.1103/PhysRevA.91.023414

[199] J. McKenna, A. M. Sayler, F. Anis, N. G. Johnson, B. Gaire, U. Lev, M. A. Zohrabi, K. D.

Carnes, B. D. Esry, and I. Ben-Itzhak, “Vibrationally cold CO2+ in intense ultrashort laser

pulses,” Phys. Rev. A 81, 061401 (2010).

URL https://link.aps.org/doi/10.1103/PhysRevA.81.061401

[200] Z.-T. Liu, K.-J. Yuan, C.-C. Shu, W.-H. Hu, and S.-L. Cong, “The carrier-envelope phase

dependence of above threshold dissociation for HD+ driven by the modulated laser field,”

Journal of Physics B: Atomic, Molecular and Optical Physics 43, 055601 (2010).

URL https://dx.doi.org/10.1088/0953-4075/43/5/055601

[201] I. Ben-Itzhak, Z. Chen, B. D. Esry, I. Gertner, O. Heber, C. D. Lin, and B. Rosner, “Mean

lifetime of the bound 2pσ state of HeH2+,” Phys. Rev. A 49, 1774 (1994).

URL http://link.aps.org/doi/10.1103/PhysRevA.49.1774

[202] I. Ben-Itzhak, I. Gertner, O. Heber, and B. Rosner, “Experimental evidence for the existence

of the 2pσ bound state of HeH2+ and its decay mechanism,” Phys. Rev. Lett. 71, 1347

(1993).

URL https://link.aps.org/doi/10.1103/PhysRevLett.71.1347

[203] H. B. Pedersen, S. Altevogt, B. Jordon-Thaden, O. Heber, M. L. Rappaport, D. Schwalm,

J. Ullrich, D. Zajfman, R. Treusch, N. Guerassimova, M. Martins, J.-T. Hoeft, M. Wellhöfer,
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[207] J. Loreau, J. Liévin, P. Palmeri, P. Quinet, and N. Vaeck, “Ab initio calculation of the 66

low-lying electronic states of HeH+: Adiabatic and diabatic representations,” J. Phys. B

43, 065101 (2010).

URL http://stacks.iop.org/0953-4075/43/i=6/a=065101

[208] M. W. J. Bromley and B. D. Esry, “Classical aspects of ultracold atom wave packet motion

through microstructured waveguide bends,” Phys. Rev. A 69, 053620 (2004).

URL http://link.aps.org/doi/10.1103/PhysRevA.69.053620

[209] P. Q. Wang, A. M. Sayler, K. D. Carnes, J. F. Xia, M. A. Smith, B. D. Esry, and I. Ben-

Itzhak, “Dissociation of H+
2 in intense femtosecond laser fields studied by coincidence

three-dimensional momentum imaging,” Phys. Rev. A 74, 043411 (2006).

URL http://link.aps.org/doi/10.1103/PhysRevA.74.043411

148

http://link.aps.org/doi/10.1103/PhysRevLett.98.223202
https://link.aps.org/doi/10.1103/PhysRevLett.121.073203
https://link.aps.org/doi/10.1103/PhysRevLett.127.043202
http://link.aps.org/doi/10.1103/PhysRevA.76.023403
http://stacks.iop.org/0953-4075/43/i=6/a=065101
http://link.aps.org/doi/10.1103/PhysRevA.69.053620
http://link.aps.org/doi/10.1103/PhysRevA.74.043411


[210] V. Serov, A. Keller, O. Atabek, H. Figger, and D. Pavicic, “Intense laser dissociation of

D2
+: From experiment to theory,” Phys. Rev. A 72, 033413 (2005).

URL http://link.aps.org/doi/10.1103/PhysRevA.72.033413

[211] A. Baltus̆ka, T. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, C. Gohle,

R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hänsch, and F. Krausz, “Attosecond
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